全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2012 

Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors

DOI: 10.3390/bios2010070

Keywords: nanofibers, glucose biosensor, carbon nanotube, poly(lactic acid)

Full-Text   Cite this paper   Add to My Lib

Abstract:

The focus of this paper is the development and investigation of properties of new nanostructured architecture for biosensors applications. Highly porous nanocomposite fibers were developed for use as active materials in biosensors. The nanocomposites comprised poly(lactic acid)(PLA)/multi-walled carbon nanotube (MWCNT) fibers obtained via solution-blow spinning onto indium tin oxide (ITO) electrodes. The electrocatalytic properties of nanocomposite-modified ITO electrodes were investigated toward hydrogen peroxide (H 2O 2) detection. We investigated the effect of carbon nanotube concentration and the time deposition of fibers on the sensors properties, viz ., sensitivity and limit of detection. Cyclic voltammetry experiments revealed that the nanocomposite-modified electrodes displayed enhanced activity in the electrochemical reduction of H 2O 2, which offers a number of attractive features to be explored in development of an amperometric biosensor. Glucose oxidase (GOD) was further immobilized by drop coating on an optimized ITO electrode covered by poly(lactic acid)/carbon nanotube nanofibrous mats. The optimum biosensor response was linear up to 800 mM of glucose with a sensitivity of 358 nA·mM ?1 and a Michaelis-Menten constant (K M) of 4.3 mM. These results demonstrate that the solution blow spun nanocomposite fibers have great potential for application as amperometric biosensors due to their high surface to volume ratio, high porosity and permeability of the substrate. The latter features may significantly enhance the field of glucose biosensors.

References

[1]  Rahman, M.M.; Ahammad, A.J.S.; Jin, J.H.; Ahn, S.J.; Lee, J.J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10, 4855–4886.
[2]  Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988, doi:10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-#.
[3]  Wilson, G.S.; Gifford, R. Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 2005, 20, 2388–2403, doi:10.1016/j.bios.2004.12.003.
[4]  Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576, doi:10.3390/s100504558.
[5]  Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose oxidase—An overview. Biotechnol. Adv. 2009, 27, 489–501.
[6]  Gibson, Q.H.; Massey, V.; Swoboda, B.E.P. Kinetics + mechanism of action of glucose oxidase. J. Biol. Chem. 1964, 239, 3927–3934.
[7]  Wilson, R.; Turner, A.P.F. Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 1992, 7, 165–185.
[8]  Albareda-Sirvent, M.; Merkoci, A.; Alegret, S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sens. Actuat. B Chem. 2000, 69, 153–163, doi:10.1016/S0925-4005(00)00536-0.
[9]  Pingarron, J.M.; Yanez-Sedeno, P.; Gonzalez-Cortes, A. Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 2008, 53, 5848–5866, doi:10.1016/j.electacta.2008.03.005.
[10]  Wang, Z.G.; Wan, L.S.; Liu, Z.M.; Huang, X.J.; Xu, Z.K. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B Enzym. 2009, 56, 189–195.
[11]  Caseli, L.; Crespilho, F.N.; Nobre, T.M.; Zaniquelli, M.E.D.; Zucolotto, V.; Oliveira, O.N. Using phospholipid langmuir and langmuir-blodgett films as matrix for urease immobilization. J. Colloid. Interface Sci. 2008, 319, 100–108.
[12]  Siqueira, J.R.; Gasparotto, L.H.S.; Oliveira, O.N.; Zucolotto, V. Processing of electroactive nanostructured films incorporating carbon nanotubes and phthalocyanines for sensing. J. Phys. Chem. C 2008, 112, 9050–9055.
[13]  Arecchi, A.; Scampicchio, M.; Drusch, S.; Mannino, S. Nanofibrous membrane based tyrosinase-biosensor for the detection of phenolic compounds. Anal. Chim. Acta 2010, 659, 133–136.
[14]  Li, D.P.; Frey, M.W.; Baeumner, A.J. Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. J. Membr. Sci. 2006, 279, 354–363, doi:10.1016/j.memsci.2005.12.036.
[15]  Manesh, K.M.; Kim, H.T.; Santhosh, P.; Gopalan, A.I.; Lee, K.P. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane. Biosens. Bioelectron. 2008, 23, 771–779, doi:10.1016/j.bios.2007.08.016.
[16]  Scampicchio, M.; Arecchi, A.; Bianco, A.; Bulbarello, A.; Bertarelli, C.; Mannino, S. Nylon nanofibrous biosensors for glucose determination. Electroanalysis 2010, 22, 1056–1060.
[17]  Shin, Y.J.; Wang, M.; Kameoka, J. Electrospun nanofiber biosensor for measuring glucose concentration. J. Photopolym. Sci. Technol. 2009, 22, 235–237.
[18]  Yoon, O.J.; Kim, H.W.; Kim, D.J.; Lee, H.J.; Yun, J.Y.; Noh, Y.H.; Lee, D.Y.; Kim, D.H.; Kim, S.S.; Lee, N.E. Nanocomposites of electrospun poly[(D,L-lactic)-co-(glycolic acid)] and plasma-functionalized single-walled carbon nanotubes for biomedical applications. Plasma Process. Polym. 2009, 6, 101–109.
[19]  Badrossamay, M.R.; McIlwee, H.A.; Goss, J.A.; Parker, K.K. Nanofiber assembly by rotary jet-spinning. Nano Lett. 2010, 10, 2257–2261, doi:10.1021/nl101355x.
[20]  Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347.
[21]  Medeiros, E.S.; Glenn, G.M.; Klamczynski, A.P.; Orts, W.J.; Mattoso, L.H.C. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 2009, 113, 2322–2330.
[22]  Sinha-Ray, S.; Yarin, A.L.; Pourdeyhimi, B. Meltblowing: I-basic physical mechanisms and threadline model. J. Appl. Phys. 2010, 108, 034912–1.
[23]  Shan, Y.P.; Yang, G.C.; Jia, Y.T.; Gong, J.; Su, Z.M.; Qu, L.Y. ITO electrode modified with chitosan nanofibers loading polyoxometalate by one step self-assembly method and its electrocatalysis. Electrochem. Commun. 2007, 9, 2224–2228.
[24]  Tang, H.; Yan, F.; Tai, Q.D.; Chan, H.L.W. The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. Biosens. Bioelectron. 2010, 25, 1646–1651, doi:10.1016/j.bios.2009.11.027.
[25]  Jia, H.F.; Zhu, G.Y.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol. Prog. 2002, 18, 1027–1032.
[26]  Joshi, P.P.; Merchant, S.A.; Wang, Y.D.; Schmidtke, D.W. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. Anal. Chem. 2005, 77, 3183–3188.
[27]  Lee, K.P.; Gopalan, A.I.; Komathi, S. Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode. Sens. Actuat. B Chem. 2009, 141, 518–525.
[28]  Liu, Y.; Chen, J.; Anh, N.T.; Too, C.O.; Misoska, V.; Wallace, G.G. Nanofiber mats from DNA, swnts, and poly(ethylene oxide) and their application in glucose biosensor. J. Electrochem. Soc. 2008, 155, K100–K103.
[29]  Liu, Y.; Wang, M.K.; Zhao, F.; Xu, Z.A.; Dong, S.J. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron. 2005, 21, 984–988, doi:10.1016/j.bios.2005.03.003.
[30]  Merkoci, A.; Pumera, M.; Llopis, X.; Perez, B.; del Valle, M.; Alegret, S. New materials for electrochemical sensing VI: Carbon nanotubes. Trac-Trends Anal. Chem. 2005, 24, 826–838, doi:10.1016/j.trac.2005.03.019.
[31]  Trojanowicz, M. Analytical applications of carbon nanotubes: A review. Trac-Trends Anal. Chem. 2006, 25, 480–489, doi:10.1016/j.trac.2005.11.008.
[32]  Wohlstadter, J.N.; Wilbur, J.L.; Sigal, G.B.; Biebuyck, H.A.; Billadeau, M.A.; Dong, L.W.; Fischer, A.B.; Gudibande, S.R.; Jamieson, S.H.; Kenten, J.H.; et al. Carbon nanotube-based biosensor. Adv. Mater. 2003, 15, 1184–1187.
[33]  McCullen, S.D.; Stano, K.L.; Stevens, D.R.; Roberts, W.A.; Monteiro-Riviere, N.A.; Clarke, L.I.; Gorga, R.E. Development, optimization, and characterization of electrospun poly(lactic acid) nanofibers containing multi-walled carbon nanotubes. J. Appl. Polym. Sci. 2007, 105, 1668–1678.
[34]  Picciani, P.H.S.; Medeiros, E.S.; Pan, Z.L.; Wood, D.F.; Orts, W.J.; Mattoso, L.H.C.; Soares, B.G. Structural, electrical, mechanical, and thermal properties of electrospun poly(lactic acid)/polyaniline blend fibers. Macromol. Mater. Eng. 2010, 295, 618–627, doi:10.1002/mame.201000019.
[35]  Oliveira, J.E.; Zucolotto, V.; Mattoso, L.H.C.; Medeiros, E.S. Multi-wall carbon nanotube/poly (lactic acid) nanocomposite fibrous membranes obtained by solution blow spinning. J. Nanosci. Nanotechnol. 2011, doi:10.1166/jnn.2011.5730.
[36]  Long, G.L.; Winefordner, J.D. Limit of detection. A closer look at the iupac definition. Anal. Chem. 1983, 55, 712–724.
[37]  Lawrence, N.S.; Deo, R.P.; Wang, J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Anal. Chim. Acta 2004, 517, 131–137, doi:10.1016/j.aca.2004.03.101.
[38]  Martinez, M.A.; Herrero, J.; Gutierrez, M.T. Electrochemical stability of indium tin oxide thin-films. Electrochim. Acta 1992, 37, 2565–2571, doi:10.1016/0013-4686(92)87053-3.
[39]  Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28, doi:10.1016/S0022-0728(79)80075-3.
[40]  Zhao, Y.-D.; Zhang, W.-D.; Chen, H.; Luo, Q.-M.; Li, S.F.Y. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode. Sens. Actuat. B Chem. 2002, 87, 168–172, doi:10.1016/S0925-4005(02)00232-0.
[41]  Cai, C.; Chen, J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem. 2004, 325, 285–292.
[42]  Kong, T.; Chen, Y.; Ye, Y.P.; Zhang, K.; Wang, Z.X.; Wang, X.P. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the zno nanotubes. Sens. Actuat. B Chem. 2009, 138, 344–350.
[43]  Wang, B.Q.; Li, B.; Deng, Q.; Dong, S.J. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material. Anal. Chem. 1998, 70, 3170–3174.
[44]  Wang, J.J.; Myung, N.V.; Yun, M.H.; Monbouquette, H.G. Glucose oxidase entrapped in polypyrrole on high-surface-area pt electrodes: A model platform for sensitive electroenzymatic biosensors. J. Electroanal. Chem. 2005, 575, 139–146.
[45]  Li, Q.W.; Luo, G.A.; Feng, J.; Zhou, Q.; Zhang, L.; Zhu, Y.F. Amperometric detection of glucose with glucose oxidase absorbed on porous nanocrystalline TiO2 film. Electroanalysis 2001, 13, 413–416.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133