全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2012 

Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

DOI: 10.3390/bios2040341

Keywords: quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), optical waveguide lightmode spectroscopy (OWLS), dual polarization interferometry (DPI), hydration, polymer brush, supported lipid bilayer (SLB), protein adsorption kinetics, conformational changes, PMOXA

Full-Text   Cite this paper   Add to My Lib

Abstract:

The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance) are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject.

References

[1]  Liedberg, B.; Nylander, C.; Lundstr?m, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuat.?1983, 4, 299–304, doi:10.1016/0250-6874(83)85036-7.
[2]  Pockrand, I.; Swalen, J.D.; Gordon, J.G.; Philpott, M.R. Surface plasmon spectroscopy of organic monolayer assemblies. Surf. Sci.?1978, 74, 237–244, doi:10.1016/0039-6028(78)90283-2.
[3]  Swalen, J.D.; Gordon, J.G.; Philpott, M.R.; Brillante, A.; Pockrand, I.; Santo, R. Plasmon and polariton dispersion by direct optical observation. Am. J. Phys.?1980, 48, 669–672, doi:10.1119/1.12334.
[4]  L?f?s, S.; Malmqvist, M.; R?nnberg, I.; Stenberg, E.; Liedberg, B.; Lundstr?m, I. Bioanalysis with surface plasmon resonance. Sens. Actuat. B?1991, 5, 79–84, doi:10.1016/0925-4005(91)80224-8.
[5]  Liedberg, B.; Nylander, C.; Lundstr?m, I. Biosensing with surface plasmon resonance—How it all started. Biosens. Bioelectron.?1995, 10, i–ix. 7576432
[6]  Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuat. B?1999, 54, 3–15, doi:10.1016/S0925-4005(98)00321-9.
[7]  Rich, R.L.; Myszka, D.G. Survey of the 1999 surface plasmon resonance biosensor literature. J. Mol. Recognit.?2000, 13, 388–407, doi:10.1002/1099-1352(200011/12)13:6<388::AID-JMR516>3.0.CO;2-#. 11114072
[8]  Jung, L.S.; Campbell, C.T.; Chinowsky, T.M.; Mar, M.N.; Yee, S.S. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir?1998, 14, 5636–5648, doi:10.1021/la971228b.
[9]  Kretschmann, E. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberfl?chenplasmaschwingungen. Z. Phys.?1971, 241, 313–324, doi:10.1007/BF01395428.
[10]  Liedberg, B.; Lundstr?m, I.; Stenberg, E. Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuat. B?1993, 11, 63–72, doi:10.1016/0925-4005(93)85239-7.
[11]  Biacore Life Sciences. Available online: http://www.biacore.com (accessed on 31 July 2012).
[12]  Bailey, L.E.; Kambhampati, D.; Kanazawa, K.K.; Knoll, W.; Frank, C.W. Using surface plasmon resonance and the quartz crystal microbalance to monitor in situ the interfacial behavior of thin organic films. Langmuir?2002, 18, 479–489, doi:10.1021/la0112716.
[13]  Baumgart, T.; Kreiter, M.; Lauer, H.; Naumann, R.; Jung, G.; Jonczyk, A.; Offenhausser, A.; Knoll, W. Fusion of small unilamellar vesicles onto laterally mixed self-assembled monolayers of thiolipopeptides. J. Colloid Interf. Sci.?2003, 258, 298–309, doi:10.1016/S0021-9797(02)00098-X.
[14]  Reimhult, E.; Larsson, C.; Kasemo, B.; Hook, F. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal. Chem.?2004, 76, 7211–7220, doi:10.1021/ac0492970.
[15]  Reimhult, E.; Zach, M.; Hook, F.; Kasemo, B. A multitechnique study of liposome adsorption on Au and lipid bilayer formation on SiO2. Langmuir?2006, 22, 3313–3319, doi:10.1021/la0519554. 16548594
[16]  De Feijter, J.A.; Benjamins, J.; Veer, F.A. Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers?1978, 17, 1759–1772, doi:10.1002/bip.1978.360170711.
[17]  Ekgasit, S.; Yu, F.; Knoll, W. Displacement of molecules near a metal surface as seen by an SPR-SPFS biosensor. Langmuir?2005, 21, 4077–4082, doi:10.1021/la047775w. 15835977
[18]  Yu, F.; Persson, B.; Lofas, S.; Knoll, W. Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J. Am. Chem. Soc.?2004, 126, 8902–8903, doi:10.1021/ja048583q. 15264814
[19]  Neumann, T.; Johansson, M.L.; Kambhampati, D.; Knoll, W. Surface-plasmon fluorescence spectroscopy. Adv. Funct. Mater.?2002, 12, 575–586, doi:10.1002/1616-3028(20020916)12:9<575::AID-ADFM575>3.0.CO;2-4.
[20]  Liebermann, T.; Knoll, W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf.-Physicochem. Eng. Aspects?2000, 171, 115–130, doi:10.1016/S0927-7757(99)00550-6.
[21]  Kurrat, R.; Textor, M.; Ramsden, J.J.; Boni, P.; Spencer, N.D. Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption. Rev. Sci. Instrum.?1997, 68, 2172–2176, doi:10.1063/1.1148069.
[22]  Lukosz, W.; Tiefenthaler, K. Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials. Opt. Lett.?1983, 8, 537–539, doi:10.1364/OL.8.000537. 19718175
[23]  Yoldas, B.E. Deposition and properties of optical oxide coatings from polymerized solutions. Appl. Opt.?1982, 21, 2960–2964, doi:10.1364/AO.21.002960. 20396156
[24]  Ball, V.; Ramsden, J.J. Buffer dependence of refractive index increments of protein solutions. Biopolymers?1998, 46, 489–492, doi:10.1002/(SICI)1097-0282(199812)46:7<489::AID-BIP6>3.0.CO;2-E.
[25]  Voros, J.; Ramsden, J.J.; Csucs, G.; Szendro, I.; de Paul, S.M.; Textor, M.; Spencer, N.D. Optical grating coupler biosensors. Biomaterials?2002, 23, 3699–3710, doi:10.1016/S0142-9612(02)00103-5.
[26]  Rodenhausen, K.B.; Schubert, M. Virtual separation approach to study porous ultra-thin films by combined spectroscopic ellipsometry and quartz crystal microbalance methods. Thin Solid Films?2011, 519, 2772–2776, doi:10.1016/j.tsf.2010.11.079.
[27]  Zhylyak, G.; Ramoz-Perez, V.; Michael, L.; Hug, T.; Citterio, D.; Spichiger-Keller, U.E. Planar integrated optical waveguide used as a transducer to yield chemical information: Detection of the activity of proteolytic enzymes e.g., serine-proteases. Opt. Lasers Eng.?2005, 43, 603–617, doi:10.1016/j.optlaseng.2004.04.012.
[28]  Halter, M.; Gabi, M.; Textor, M.; Voros, J.; Grandin, H.M. Enhanced optical waveguide light mode spectroscopy via detection of fluorophore absorbance. Rev. Sci. Instrum.?2006, 77.
[29]  Duveneck, G.L.; Abel, A.P.; Bopp, M.A.; Kresbach, G.M.; Ehrat, M. Planar waveguides for ultra-high sensitivity of the analysis of nucleic acids. Anal. Chim. Acta?2002, 469, 49–61, doi:10.1016/S0003-2670(01)01593-8.
[30]  Duveneck, G.L.; Bopp, M.A.; Ehrat, M.; Balet, L.P.; Haiml, M.; Keller, U.; Marowsky, G.; Soria, S. Two-photon fluorescence excitation of macroscopic areas on planar waveguides. Biosens. Bioelectron.?2003, 18, 503–510, doi:10.1016/S0956-5663(03)00006-X. 12706556
[31]  Grandin, H.M.; Staedler, B.; Textor, M.; Voeroes, J. Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface. Biosens. Bioelectron.?2006, 21, 1476–1482, doi:10.1016/j.bios.2005.06.011.
[32]  Bally, M.; Halter, M.; Voros, J.; Grandin, H.M. Optical microarray biosensing techniques. Surf. Interface Anal.?2006, 38, 1442–1458, doi:10.1002/sia.2375.
[33]  Picart, C.; Gergely, C.; Arntz, Y.; Voegel, J.-C.; Schaaf, P.; Cuisinier, F.J.G.; Senger, B. Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy. Biosens. Bioelectron.?2004, 20, 553–561, doi:10.1016/j.bios.2004.03.005. 15494239
[34]  Kozma, P.; Hamori, A.; Kurunczi, S.; Cottier, K.; Horvath, R. Grating coupled optical waveguide interferometer for label-free biosensing. Sens. Actuat. B?2011, 155, 446–450, doi:10.1016/j.snb.2010.12.045.
[35]  Bearinger, J.P.; Voros, J.; Hubbell, J.A.; Textor, M. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): A pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips. Biotechnol. Bioeng.?2003, 82, 465–473, doi:10.1002/bit.10591. 12632403
[36]  Grieshaber, D.; MacKenzie, R.; Voros, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors?2008, 8, 1400–1458, doi:10.3390/s8031400.
[37]  Sauerbrey, G. Verwendung von Schwingquarzen zur W?gung dunner Schichten und zur Mikrow?gung. Z. Phys.?1959, 155, 206–222, doi:10.1007/BF01337937.
[38]  Rodahl, M.; Kasemo, B. On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens. Actuat. A?1996, 54, 448–456, doi:10.1016/S0924-4247(97)80002-7.
[39]  Johannsmann, D.; Mathauer, K.; Wegner, G.; Knoll, W. Viscoelastic properties of thin-films probed with a quartz-crystal resonator. Phys. Rev. B?1992, 46, 7808–7815, doi:10.1103/PhysRevB.46.7808.
[40]  Rodahl, M.; H??k, F.; Krozer, A.; Brzezinski, P.; Kasemo, B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum.?1995, 66, 3924–3930, doi:10.1063/1.1145396.
[41]  Rodahl, M.; H??k, F.; Fredriksson, C.; Keller, C.A.; Krozer, A.; Brzezinski, P.; Voinova, M.; Kasemo, B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss.?1997, 107, 229–246, doi:10.1039/a703137h. 9569776
[42]  Rodahl, M.; Kasemo, B. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev. Sci. Instrum.?1996, 67, 3238–3241, doi:10.1063/1.1147494.
[43]  Voinova, M.V.; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach. Phys. Scr.?1999, 59, 391–396, doi:10.1238/Physica.Regular.059a00391.
[44]  Hook, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sott, K.; Elwing, H. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem.?2001, 73, 5796–5804, doi:10.1021/ac0106501.
[45]  Reviakine, I.; Johannsmann, D.; Richter, R.P. Hearing what you cannot see and visualizing what you hear: Interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem.?2011, 83, 8838–8848, doi:10.1021/ac201778h. 21939220
[46]  Johannsmann, D.; Reviakine, I.; Richter, R.P. Dissipation in films of adsorbed nanospheres studied by Quartz Crystal Microbalance (QCM). Anal. Chem.?2009, 81, 8167–8176, doi:10.1021/ac901381z. 19746972
[47]  Friedt, J.M.; Francis, L.; Reekmans, G.; de Palma, R.; Campitelli, A.; Sleytr, U.B. Simultaneous surface acoustic wave and surface plasmon resonance measurements: Electrodeposition and biological interactions monitoring. J. Appl. Phys.?2004, 95, 1677–1680, doi:10.1063/1.1625420.
[48]  Zhou, C.; Friedt, J.-M.; Angelova, A.; Choi, K.-H.; Laureyn, W.; Frederix, F.; Francis, L.A.; Campitelli, A.; Engelborghs, Y.; Borghs, G. Human immunoglobulin adsorption investigated by means of quartz crystal microbalance dissipation, atomic force microscopy, surface acoustic wave, and surface plasmon resonance techniques. Langmuir?2004, 20, 5870–5878, doi:10.1021/la036251d. 16459603
[49]  Laschitsch, A.; Menges, B.; Johannsmann, D. Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl. Phys. Lett.?2000, 77, 2252–2254, doi:10.1063/1.1315338.
[50]  Plunkett, M.A.; Wang, Z.; Rutland, M.W.; Johannsmann, D. Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir?2003, 19, 6837–6844, doi:10.1021/la034281a.
[51]  Hook, F.; Voros, J.; Rodahl, M.; Kurrat, R.; Boni, P.; Ramsden, J.J.; Textor, M.; Spencer, N.D.; Tengvall, P.; Gold, J.; Kasemo, B. A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf. B: Biointerfaces?2002, 24, 155–170, doi:10.1016/S0927-7765(01)00236-3.
[52]  Larsson, C.; Rodahl, M.; Hook, F. Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal. Chem.?2003, 75, 5080–5087, doi:10.1021/ac034269n. 14708781
[53]  Stengel, G.; Hook, F.; Knoll, W. Viscoelastic modeling of template-directed DNA synthesis. Anal. Chem.?2005, 77, 3709–3714, doi:10.1021/ac048302x. 15924410
[54]  Voeroes, J. The density and refractive index of adsorbing protein layers. Biophys. J.?2004, 87, 553–561, doi:10.1529/biophysj.103.030072. 15240488
[55]  Rechendorff, K.; Hovgaard, M.B.; Foss, M.; Zhdanov, V.P.; Besenbacher, F. Enhancement of protein adsorption induced by surface roughness. Langmuir?2006, 22, 10885–10888, doi:10.1021/la0621923. 17154557
[56]  Evans-Nguyen, K.M.; Fuierer, R.R.; Fitchett, B.D.; Tolles, L.R.; Conboy, J.C.; Schoenfisch, M.H. Changes in adsorbed fibrinogen upon conversion to fibrin. Langmuir?2006, 22, 5115–5121, doi:10.1021/la053070y. 16700602
[57]  Malmstroem, J.; Agheli, H.; Kingshott, P.; Sutherland, D.S. Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: Quantification of protein layer properties using QCM-D and SPR. Langmuir?2007, 23, 9760–9768, doi:10.1021/la701233y. 17691829
[58]  Stevens, M.M.; Allen, S.; Sakata, J.K.; Davies, M.C.; Roberts, C.J.; Tendler, S.J.B.; Tirrell, D.A.; Williams, P.M. pH-Dependent behavior of surface-immobilized artificial leucine zipper proteins. Langmuir?2004, 20, 7747–7752, doi:10.1021/la030440e. 15323527
[59]  Su, X.; Wu, Y.-J.; Knoll, W. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens. Bioelectron.?2005, 21, 719–726, doi:10.1016/j.bios.2005.01.006. 16242610
[60]  Su, X.; Wu, Y.-J.; Robelek, R.; Knoll, W. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir?2005, 21, 348–353, doi:10.1021/la047997u. 15620323
[61]  Peh, W.Y.X.; Reimhult, E.; Teh, H.F.; Thomsen, J.S.; Su, X.D. Understanding ligand binding effects on the conformation of estrogen receptor alpha-DNA complexes: A combinational quartz crystal microbalance with dissipation and surface plasmon resonance study. Biophys. J.?2007, 92, 4415–4423, doi:10.1529/biophysj.106.099382. 17384075
[62]  Richter, R.P.; Brisson, A.R. Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and ellipsometry. Biophys. J.?2005, 88, 3422–3433, doi:10.1529/biophysj.104.053728.
[63]  Stalgren, J.J.R.; Eriksson, J.; Boschkova, K. A comparative study of surfactant adsorption on model surfaces using the quartz crystal microbalance and the ellipsometer. J. Colloid Interface Sci.?2002, 253, 190–195, doi:10.1006/jcis.2002.8482.
[64]  Benetti, E.M.; Reimhult, E.; de Bruin, J.; Zapotoczny, S.; Textor, M.; Vancso, G.J. Poly(methacrylic acid) grafts grown from designer surfaces: The effect of initiator coverage on polymerization kinetics, morphology, and properties. Macromolecules?2009, 42, 1640–1647, doi:10.1021/ma8014678.
[65]  Picart, C.; Lavalle, P.; Hubert, P.; Cuisinier, F.J.G.; Decher, G.; Schaaf, P.; Voegel, J.C. Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir?2001, 17, 7414–7424, doi:10.1021/la010848g.
[66]  Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G.D.; Schaaf, P.; Voegel, J.C.; Lavalle, P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc. Natl. Acad. Sci. USA?2002, 99, 12531–12535, doi:10.1073/pnas.202486099. 12237412
[67]  Halthur, T.J.; Elofsson, U.M. Multilayers of charged polypeptides as studied by in situ ellipsometry and quartz crystal microbalance with dissipation. Langmuir?2004, 20, 1739–1745, doi:10.1021/la035475t.
[68]  Halthur, T.J.; Claesson, P.M.; Elofsson, U.M. Immobilization of enamel matrix derivate protein onto polypeptide multilayers: Comparative in situ measurements using ellipsometry, quartz crystal microbalance with dissipation, and dual-polarization interferometry. Langmuir?2006, 22, 11065–11071, doi:10.1021/la0607712.
[69]  Ramos, J.J.I.; Stahl, S.; Richter, R.P.; Moya, S.E. Water content and buildup of poly(diallyldimethylammonium chloride)/poly(sodium 4-styrenesulfonate) and poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) polyelectrolyte multilayers studied by an in situ combination of a quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry. Macromolecules?2010, 43, 9063–9070, doi:10.1021/ma1015984.
[70]  Bittrich, E.; Rodenhausen, K.B.; Eichhorn, K.J.; Hofmann, T.; Schubert, M.; Stamm, M.; Uhlmann, P. Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study. Biointerphases?2010, 5, 1–9, doi:10.1116/1.3319326. 20408729
[71]  Lord, M.S.; Stenzel, M.H.; Simmons, A.; Milthorpe, B.K. Lysozyme interaction with poly(HEMA)-based hydrogel. Biomaterials?2006, 27, 1341–1345, doi:10.1016/j.biomaterials.2005.09.007. 16183113
[72]  Rodenhausen, K.B.; Kasputis, T.; Pannier, A.K.; Gerasimov, J.Y.; Lai, R.Y.; Solinsky, M.; Tiwald, T.E.; Wang, H.; Sarkar, A.; Hofmann, T.; et al. Combined optical and acoustical method for determination of thickness and porosity of transparent organic layers below the ultra-thin film limit. Rev. Sci. Instrum.?2011, 82, 103111:1–103111:10.
[73]  Wang, G.; Rodahl, M.; Edvardsson, M.; Svedhem, S.; Ohlsson, G.; Hook, F.; Kasemo, B. A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies. Rev. Sci. Instrum.?2008, 79, 075107:1–075107:7.
[74]  Rodenhausen, K.B.; Guericke, M.; Sarkar, A.; Hofmann, T.; Ianno, N.; Schubert, M.; Tiwald, T.E.; Solinsky, M.; Wagner, M. Micelle-assisted bilayer formation of cetyltrimethylammonium bromide thin films studied with combinatorial spectroscopic ellipsometry and quartz crystal microbalance techniques. Thin Solid Films?2011, 519, 2821–2824, doi:10.1016/j.tsf.2010.11.078.
[75]  Rodenhausen, K.B.; Duensing, B.A.; Kasputis, T.; Pannier, A.K.; Hofmann, T.; Schubert, M.; Tiwald, T.E.; Solinsky, M.; Wagner, M. In situ monitoring of alkanethiol self-assembled monolayer chemisorption with combined spectroscopic ellipsometry and quartz crystal microbalance techniques. Thin Solid Films?2011, 519, 2817–2820, doi:10.1016/j.tsf.2010.11.081.
[76]  Edvardsson, M.; Svedhem, S.; Wang, G.; Richter, R.; Rodahl, M.; Kasemo, B. QCM-D and reflectometry instrument: Applications to supported lipid structures and their biomolecular interactions. Anal. Chem.?2009, 81, 349–361, doi:10.1021/ac801523w. 19035651
[77]  Kunze, A.; Svedhem, S.; Kasemo, B. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles. Langmuir?2009, 25, 5146–5158, doi:10.1021/la802758h. 19326873
[78]  Kunze, A.; Zhao, F.; Marel, A.K.; Svedhem, S.; Kasemo, B. Ion-mediated changes of supported lipid bilayers and their coupling to the substrate. A case of bilayer slip? Soft Matter?2011, 7, 8582–8591, doi:10.1039/c1sm05886j.
[79]  Kenausis, G.L.; Voeroes, J.; Elbert, D.L.; Huang, N.; Hofer, R.; Ruiz-Taylor, L.; Textor, M.; Hubbell, J.A.; Spencer, N.D. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B?2000, 104, 3298–3309, doi:10.1021/jp993359m.
[80]  Huang, N.-P.; Michel, R.; Voros, J.; Textor, M.; Hofer, R.; Rossi, A.; Elbert, D.L.; Hubbell, J.A.; Spencer, N.D. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir?2001, 17, 489–498, doi:10.1021/la000736+.
[81]  Pasche, S.; de Paul, S.M.; Voeroes, J.; Spencer, N.D.; Textor, M. Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on Niobium Oxide surfaces: A quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLSu OWLS. Langmuir?2003, 19, 9216–9225, doi:10.1021/la034111y.
[82]  Pasche, S.; Textor, M.; Meagher, L.; Spencer, N.D.; Griesser, H.J. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces. Langmuir?2005, 21, 6508–6520, doi:10.1021/la050386x. 15982060
[83]  Konradi, R.; Pidhatika, B.; Muehlebach, A.; Textor, M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir?2008, 24, 613–616, doi:10.1021/la702917z. 18179272
[84]  Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O. Bending rigidity and induced persistence length of molecular bottle brushes: A self-consistent-field theory. Macromolecules?2005, 38, 8891–8901, doi:10.1021/ma050871z.
[85]  Merrill, E.W. Distinctions and correspondences among surfaces contacting blood. Ann. N. Y. Acad. Sci.?1987, 516, 196–203, doi:10.1111/j.1749-6632.1987.tb33041.x. 3439726
[86]  Chapman, R.G.; Ostuni, E.; Liang, M.N.; Meluleni, G.; Kim, E.; Yan, L.; Pier, G.; Warren, H.S.; Whitesides, G.M. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir?2001, 17, 1225–1233, doi:10.1021/la001222d.
[87]  Keller, C.A.; Kasemo, B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J.?1998, 75, 1397–1402, doi:10.1016/S0006-3495(98)74057-3. 9726940
[88]  Richter, R.P.; Berat, R.; Brisson, A.R. Formation of solid-supported lipid bilayers: An integrated view. Langmuir?2006, 22, 3497–3505, doi:10.1021/la052687c. 16584220
[89]  Rossetti, F.F.; Bally, M.; Michel, R.; Textor, M.; Reviakine, I. Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: Formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir?2005, 21, 6443–6450, doi:10.1021/la0509100. 15982052
[90]  Reimhult, E.; Hook, F.; Kasemo, B. Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: Influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir?2003, 19, 1681–1691, doi:10.1021/la0263920.
[91]  Baumann, M.K.; Amstad, E.; Mashaghi, A.; Textor, M.; Reimhult, E. Characterization of supported lipid bilayers incorporating the phosphoinositides phosphatidylinositol 4,5-biphosphate and phosphoinositol-3,4,5-triphosphate by complementary techniques. Biointerphases?2010, 5, 114–119, doi:10.1116/1.3516485. 21219032
[92]  Kaufmann, S.; Papastavrou, G.; Kumar, K.; Textor, M.; Reimhult, E. A detailed investigation of the formation kinetics and layer structure of poly(ethylene glycol) tether supported lipid bilayers. Soft Matter?2009, 5, 2804–2814, doi:10.1039/b901874c.
[93]  Salamon, Z.; Tollin, G. Optical anisotropy in lipid bilayer membranes: Coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape. Biophys. J.?2001, 80, 1557–1567, doi:10.1016/S0006-3495(01)76128-0.
[94]  Keller, C.A.; Glasm?star, K.; Zhdanov, V.P.; Kasemo, B. Formation of supported membranes from vesicles. Phys. Rev. Lett.?2000, 84, 5443–5446, doi:10.1103/PhysRevLett.84.5443. 10990964
[95]  Mashaghi, A.; Swann, B.; Popplewell, J.; Textor, M.; Reimhult, E. Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem.?2008, 80, 3666–3676, doi:10.1021/ac800027s. 18422336
[96]  Cuypers, P.A.; Corsel, J.W.; Janssen, M.P.; Kop, J.M.M.; Hermens, W.T.; Hemker, H. Adsorption of prothrombin to phosphatidylserine by ellipsometry. J. Biol. Chem.?1983, 258, 2426–2431. 6822569
[97]  Tellechea, E.; Johannsmann, D.; Steinmetz, N.F.; Richter, R.P.; Reviakine, I. Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir?2009, 25, 5177–5184, doi:10.1021/la803912p. 19397357
[98]  Merz, C.; Knoll, W.; Textor, M.; Reimhult, E. Formation of supported bacterial lipid membrane mimics. Biointerphases?2008, 3, FA41–FA50, doi:10.1116/1.2896119. 20408668
[99]  Jonsson, M.P.; Jonsson, P.; Dahlin, A.B.; Hook, F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett.?2007, 7, 3462–3468, doi:10.1021/nl072006t. 17902726
[100]  Cross, G.H.; Reeves, A.; Brand, S.; Swann, M.J.; Peel, L.L.; Freeman, N.J.; Lu, J.R. The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferometer. J. Phys. D-Appl. Phys.?2004, 37, 74–80, doi:10.1088/0022-3727/37/1/012.
[101]  Cross, G.H.; Reeves, A.A.; Brand, S.; Popplewell, J.F.; Peel, L.L.; Swann, M.J.; Freeman, N.J. A new quantitative optical biosensor for protein characterisation. Biosens. Bioelectron.?2003, 19, 383–390, doi:10.1016/S0956-5663(03)00203-3. 14615097
[102]  Cross, G.H.; Ren, Y.T.; Freeman, N.J. Young’s fringes from vertically integrated slab waveguides: Applications to humidity sensing. J. Appl. Phys.?1999, 86, 6483–6488, doi:10.1063/1.371712.
[103]  Swann, M.J.; Peel, L.L.; Carrington, S.; Freeman, N.J. Dual-polarization interferometry: An analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal. Biochem.?2004, 329, 190–198, doi:10.1016/j.ab.2004.02.019. 15158477
[104]  Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta-Rev. Biomembr.?2000, 1469, 159–195, doi:10.1016/S0304-4157(00)00016-2.
[105]  Biesalski, M.; Ruhe, J. Swelling of a polyelectrolyte brush in humid air. Langmuir?2000, 16, 1943–1950, doi:10.1021/la990863+.
[106]  Ruhe, J.; Ballauff, M.; Biesalski, M.; Dziezok, P.; Grohn, F.; Johannsmann, D.; Houbenov, N.; Hugenberg, N.; Konradi, R.; Minko, S.; et al. Polyelectrolyte brushes. In Polyelectrolytes with Defined Molecular Architecture I; Schmidt, M., Ed.; Springer-Verlag: Berlin, Germany, 2004; Volume 165, pp. 79–150.
[107]  Wojciechowski, P.W. Interfacial Phenomena and Bioproducts; Brash, J.L., Wojciechowski, P.W., Eds.; CRC Press: New York, NY, USA, 1996; p. 209.
[108]  Kreuzer, H.J.; Gortel, Z.W. Physisorption Kinetics; Springer Verlag: Berlin, Germany, 1986.
[109]  Huang, C.J.; Dostalek, J.; Sessitsch, A.; Knoll, W. Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7. Anal. Chem.?2011, 83, 674–677, doi:10.1021/ac102773r. 21218821
[110]  Bally, M.; Gunnarsson, A.; Svensson, L.; Larson, G.; Zhdanov, V.P.; Hook, F. Interaction of single viruslike particles with vesicles containing glycosphingolipids. Phys. Rev. Lett.?2001, 107, 188103:1–188103:5.
[111]  Dostalek, J.; Knoll, W. Biosensors based on surface plasmon-enhanced fluorescence spectroscopy. Biointerphases?2008, 3, FD12–FD22, doi:10.1116/1.2994688. 20408695
[112]  Naumann, R.; Schiller, S.M.; Giess, F.; Grohe, B.; Hartman, K.B.; Karcher, I.; Koper, I.; Lubben, J.; Vasilev, K.; Knoll, W. Tethered lipid Bilayers on ultraflat gold surfaces. Langmuir?2003, 19, 5435–5443, doi:10.1021/la0342060.
[113]  Sugihara, K.; Delai, M.; Szendro, I.; Guillaume-Gentil, O.; Voros, J.; Zambelli, T. Simultaneous OWLS and EIS monitoring of supported lipid bilayers with the pore forming peptide melittin. Sens. Actuat. B?2012, 161, 600–606, doi:10.1016/j.snb.2011.11.007.
[114]  Ferner-Ortner-Bleckmann, J.; Schrems, A.; Ilk, N.; Egelseer, E.M.; Sleytr, U.B.; Schuster, B. Multitechnique study on a recombinantly produced Bacillus halodurans laccase and an S-layer/laccase fusion protein. Biointerphases?2011, 6, 63–72, doi:10.1116/1.3589284. 21721841

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413