全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Biosensors  2012 

In-Field Implementation of a Recombinant Factor C Assay for the Detection of Lipopolysaccharide as a Biomarker of Extant Life within Glacial Environments

DOI: 10.3390/bios2010083

Keywords: lipopolysaccharide, endotoxin, pyrogen, portable life detection, recombinant Factor C, cryosphere, subglacial

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discovery over the past two decades of viable microbial communities within glaciers has promoted interest in the role of glaciers and ice sheets (the cryosphere) as contributors to subglacial erosion, global biodiversity, and in regulating global biogeochemical cycles. In situ or in-field detection and characterisation of microbial communities is becoming recognised as an important approach to improve our understanding of such communities. Within this context we demonstrate, for the first time, the ability to detect Gram-negative bacteria in glacial field-environments (including subglacial environments) via the detection of lipopolysaccharide (LPS); an important component of Gram-negative bacterial cell walls. In-field measurements were performed using the recently commercialised PyroGene? recombinant Factor C (rFC) endotoxin detection system and used in conjunction with a handheld fluorometer to measure the fluorescent endpoint of the assay. Twenty-seven glacial samples were collected from the surface, bed and terminus of a low-biomass Arctic valley glacier (Engabreen, Northern Norway), and were analysed in a field laboratory using the rFC assay. Sixteen of these samples returned positive LPS detection. This work demonstrates that LPS detection via rFC assay is a viable in-field method and is expected to be a useful proxy for microbial cell concentrations in low biomass environments.

References

[1]  Aycicek, H.; Oguz, U.; Karci, K. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int. J. Hyg. Environ. Health?2006, 209, 203–206, doi:10.1016/j.ijheh.2005.09.007. 16503304
[2]  Lipscomb, I.P.; Sihota, A.K.; Botham, M.; Harris, K.L.; Keevil, C.W. Rapid method for the sensitive detection of protein contamination on surgical instruments. J. Hosp. Infect.?2006, 62, 141–148, doi:10.1016/j.jhin.2005.07.008. 16290315
[3]  Rasmussen, J.P.; Giglio, S.; Monis, P.T.; Campbell, R.J.; Saint, C.P. Development and field testing of a real-time PCR assay for cylindrospermopsin-producing cyanobacteria. J. Appl. Microbiol.?2008, 104, 1503–1515, doi:10.1111/j.1365-2672.2007.03676.x. 18179541
[4]  Davidson, C.A.; Griffith, C.J.; Peters, A.C.; Fielding, L.M. Evaluation of two methods for monitoring surface cleanliness—ATP bioluminescence and traditional hygiene swabbing. Luminescence?1999, 14, 33–38, doi:10.1002/(SICI)1522-7243(199901/02)14:1<33::AID-BIO514>3.0.CO;2-I. 10398558
[5]  Sharp, M.; Parkes, J.; Cragg, B.; Fairchild, I.J.; Lamb, H.; Tranter, M. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology?1999, 27, 107–110, doi:10.1130/0091-7613(1999)027<0107:WBPAGB>2.3.CO;2.
[6]  Skidmore, M.L.; Foght, J.M.; Sharp, M.J. Microbial life beneath a High Arctic glacier. Appl. Environ. Microbiol.?2000, 66, 3214–3220, doi:10.1128/AEM.66.8.3214-3220.2000. 10919772
[7]  Foght, J.; Aislabie, J.; Turner, S.; Brown, C.E.; Ryburn, J.; Saul, D.J.; Lawson, W. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb. Ecol.?2004, 47, 329–340. 14994176
[8]  Gaidos, E.; Lanoil, B.; Thorsteinsson, T.; Graham, A.; Skidmore, M.; Han, S.K.; Rust, T.; Popp, B. A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology?2004, 4, 327–344, doi:10.1089/ast.2004.4.327. 15383238
[9]  Mikucki, J.A.; Foreman, C.M.; Sattler, B.; Berry Lyons, W.; Priscu, J.C. Geomicrobiology of Blood Falls: An iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquat. Geochem.?2004, 10, 199–220, doi:10.1007/s10498-004-2259-x.
[10]  Skidmore, M.; Anderson, S.P.; Sharp, M.; Foght, J.; Lanoil, B.D. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol.?2005, 71, 6986–6997, doi:10.1128/AEM.71.11.6986-6997.2005. 16269734
[11]  Siegert, M.J.; Behar, A.; Bentley, M.; Blake, D.; Bowden, S.; Christoffersen, P.; Cockell, C.; Corr, H.; Cullen, D.C.; Edwards, H.; et al. Exploration of Ellsworth Subglacial Lake: A concept paper on the development, organisation and execution of an experiment to explore, measure and sample the environment of a West Antarctic subglacial lake: The Lake Ellsworth Consortium. Rev. Environ. Sci. Biotechnol.?2007, 6, 161–179, doi:10.1007/s11157-006-9109-9.
[12]  Hodson, A.; Anesio, A.M.; Tranter, M.; Fountain, A.; Osborn, M.; Priscu, J.; Laybourn-Parry, J.; Sattler, B. Glacial ecosystems. Ecol. Monogr.?2008, 78, 41–67, doi:10.1890/07-0187.1.
[13]  Watson, S.W.; Novitsky, T.J.; Quinby, H.L.; Valois, F.W. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol.?1977, 33, 940–946. 326192
[14]  Xiang, S.; Yao, T.; An, L.; Xu, B.; Wang, J. 16S rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Appl. Environ. Microbiol.?2005, 71, 4619–4627, doi:10.1128/AEM.71.8.4619-4627.2005. 16085856
[15]  Brinkmeyer, R.; Knittel, K.; Jurgens, J.; Weyland, H.; Amann, R.; Helmke, E. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol.?2003, 69, 6610–6619, doi:10.1128/AEM.69.11.6610-6619.2003. 14602620
[16]  Mosier, A.C.; Murray, A.E.; Fritsen, C.H. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol. Ecol.?2007, 59, 274–288, doi:10.1111/j.1574-6941.2006.00220.x. 17092309
[17]  Amato, P.; Hennebelle, R.; Magand, O.; Sancelme, M.; Delort, A.M.; Barbante, C.; Boutron, C.; Ferrari, C. Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol.?2007, 59, 255–264, doi:10.1111/j.1574-6941.2006.00198.x. 17328766
[18]  Bang, F.B. A bacterial disease of Limulus polyphemus. B. Johns Hopkins Hosp.?1956, 98, 325–351.
[19]  Levin, J.; Tomasulo, P.A.; Oser, R.S. Detection of endotoxin in human blood and demonstration of an inhibitor. J. Lab. Clin. Med.?1970, 75, 903–911. 5421075
[20]  Steele, A.; Schweizer, M.; Amundsen, H.E.F.; Wainwright, N. In-Field Testing of Life Detection Instruments and Protocols in a Mars Analogue Arctic Environment. Proceedings of the 35th Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004.
[21]  La Ferla, R.; Lo Giudice, A.; Maimone, G. Morphology and LPS content for the estimation of marine bacterioplankton biomass in the Ionian Sea. Sci. Mar.?2004, 68, 23–31.
[22]  Karl, D.M.; Bird, D.F.; Bj?rkman, K.; Houlihan, T.; Shackelford, R.; Tupas, L. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science?1999, 286, 2144–2147, doi:10.1126/science.286.5447.2144. 10591643
[23]  Nakamura, T.; Morita, T.; Iwanaga, S. Lipopolysaccharide-sensitive serine-protease zymogen (factor C) found in Limulus hemocytes. Isolation and characterization. Eur. J. Biochem.?1986, 154, 511–521, doi:10.1111/j.1432-1033.1986.tb09427.x. 3512266
[24]  Ding, J.L.; Ho, B. A new era in pyrogen testing. Trends Biotechnol.?2001, 19, 277–281, doi:10.1016/S0167-7799(01)01694-8. 11451451
[25]  Lappegard, G.; Kohler, J.; Jackson, M.; Hagen, J.O. Characteristics of subglacial drainage systems deduced from load-cell measurements. J. Glaciol.?2006, 52, 137–148, doi:10.3189/172756506781828908.
[26]  Douwes, J.; Versloot, P.; Hollander, A.; Heederik, D.; Doekes, G. Influence of various dust sampling and extraction methods on the measurement of airborne endotoxin. Appl. Environ. Microbiol.?1995, 61, 1763–1769. 7646014
[27]  Holzheimer, R. The significance of endotoxin release in experimental and clinical sepsis in surgical patients—Evidence for antibiotic-induced endotoxin release? Infection?1998, 26, 77–84, doi:10.1007/BF02767765. 9561376
[28]  Mueller, M.; Lindner, B.; Kusumoto, S.; Fukase, K.; Schromm, A.B.; Seydel, U. Aggregates are the biologically active units of endotoxin. J. Biol. Chem.?2004, 279, 26307–26313, doi:10.1074/jbc.M401231200. 15096514
[29]  Segawa, T.; Miyamoto, K.; Ushida, K.; Agata, K.; Okada, N.; Kohshima, S. Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl. Environ. Microbiol.?2005, 71, 123–130, doi:10.1128/AEM.71.1.123-130.2005. 15640179
[30]  Ka?tovská, K.; Stibal, M.; ?abacká, M.; ?erná, B.; ?antr??ková, H.; Elster, J. Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA. Polar Biol.?2007, 30, 277–287, doi:10.1007/s00300-006-0181-y.
[31]  Mader, H.M.; Pettitt, M.E.; Wadham, J.L.; Wolff, E.W.; Parkes, R.J. Subsurface ice as a microbial habitat. Geology?2006, 34, 169–172, doi:10.1130/G22096.1.
[32]  Junge, K.; Krembs, C.; Deming, J.; Stierle, A.; Eicken, H. A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann. Glaciol.?2001, 33, 304–310, doi:10.3189/172756401781818275.
[33]  Tung, H.C.; Price, P.B.; Bramall, N.E.; Vrdoljak, G. Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology?2006, 6, 69–86, doi:10.1089/ast.2006.6.69. 16551227

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413