全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Atmosphere: A Source of Pathogenic or Beneficial Microbes?

DOI: 10.3390/atmos3010087

Keywords: air microbiota, health, metabolic processes, biotechnology

Full-Text   Cite this paper   Add to My Lib

Abstract:

The atmosphere has been described as one of the last frontiers of biological exploration on Earth. The composition of microbial communities in the atmosphere is still not well-defined, and taxonomic studies of bacterial diversity in the outdoor air have just started to emerge, whereas our knowledge about the functional potential of air microbiota is scant. When in the air, microorganisms can be attached to ambient particles and/or incorporated into water droplets of clouds, fog, and precipitation ( i.e., rain, snow, hail). Further, they can be deposited back to earth’s surfaces via dry and wet deposition processes and they can possibly induce an effect on the diversity and function of aquatic and terrestrial ecosystems or impose impacts to human health through microbial pathogens dispersion. In addition to their impact on ecosystem and public health, there are strong indications that air microbes are metabolically active and well adapted to the harsh atmospheric conditions. Furthermore they can affect atmospheric chemistry and physics, with important implications in meteorology and global climate. This review summarizes current knowledge about the ubiquitous presence of microbes in the atmosphere and discusses their ability to survive in the atmospheric environment. The purpose is to evaluate the atmospheric environment as a source of pathogenic or beneficial microbes and to assess the biotechnological opportunities that may offer.

References

[1]  Rothschild, L.J.; Mancinelli, R.C. Life in extreme environments. Nature 2001, 409, 1092–1101, doi:10.1038/35059215.
[2]  Womack, A.M.; Bohannan, B.J.M.; Green, J.L. Biodiversity and biogeography of the atmosphere. Phil. Trans. R. Soc. B 2010, 365, 3645–3653, doi:10.1098/rstb.2010.0283.
[3]  Lacey, M.E.; West, J.S. The Air Spora: A Manual for Catching and Identifying Airborne Biological Particles; Springer: Dordrecht, The Netherlands, 2006.
[4]  Kuske, C.R. Current and emerging technologies for the study of bacteria in the outdoor air. Curr. Opin. Biotech. 2006, 17, 291–296, doi:10.1016/j.copbio.2006.04.001.
[5]  Stetzenbach, L.D.; Buttner, M.P.; Cruz, P. Detection and enumeration of airborne biocontaminants. Curr. Opin. Biotech. 2004, 15, 170–174, doi:10.1016/j.copbio.2004.04.009.
[6]  Bauer, H.; Kasper-Giebl, A.; L?flund, M.; Giebl, H.; Hitzenberger, R.; Zibuschka, F.; Puxbaum, H. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 2002, 64, 109–119, doi:10.1016/S0169-8095(02)00084-4.
[7]  Christner, B.C.; Cai, R.; Morris, C.E.; McCarter, K.S.; Foreman, C.M.; Skidmore, M.L.; Montross, S.N.; Sands, D.C. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proc. Natl. Acad. Sci. USA 2008, 105, 18854–18859, doi:10.1073/pnas.0809816105. 19028877
[8]  Christner, B.C.; Morris, C.E.; Foreman, C.M.; Cai, R.; Sands, D.C. Ubiquity of biological ice nucleators in snowfall. Science 2008, 319, doi:10.1126/science.1149757.
[9]  Fuzzi, S.; Mandrioli, P.; Perfetto, A. Fog droplets—An atmospheric source of secondary biological aerosol particles. Atmos. Environ. 1997, 31, 287–290, doi:10.1016/1352-2310(96)00160-4.
[10]  M?hler, O.; DeMott, P.J.; Vali, G.; Levin, Z. Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosci. Discuss. 2007, 4, 2559–2591, doi:10.5194/bgd-4-2559-2007.
[11]  Sattler, B.; Puxbaum, H.; Psenner, R. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239–242, doi:10.1029/2000GL011684.
[12]  Jones, S.E.; Newton, R.J.; McMahon, K.D. Potential for atmospheric deposition of bacteria to influence bacterioplankton communities. FEMS Microbiol. Ecol. 2008, 64, 388–394, doi:10.1111/j.1574-6941.2008.00476.x.
[13]  Griffin, D.W.; Kubilay, N.; Kocak, M.; Gray, M.A.; Borden, T.C.; Shinn, E.A. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmos. Environ. 2007, 41, 4050–4062, doi:10.1016/j.atmosenv.2007.01.023.
[14]  Ariya, P.A.; Amyot, M. New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 2004, 38, 1231–1232, doi:10.1016/j.atmosenv.2003.12.006.
[15]  Boreson, J.; Dillner, A.M.; Peccia, J. Correlation bioaerosol load with PM2.5 and PM10cf concentrations: A comparison between natural desert and urban fringe aerosols. Atmos. Environ. 2004, 38, 6029–6041, doi:10.1016/j.atmosenv.2004.06.040.
[16]  Peccia, J.; Hernandez, M. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmos. Environ. 2006, 40, 3941–3961, doi:10.1016/j.atmosenv.2006.02.029.
[17]  Jones, A.M.; Harrison, R.M. The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Sci. Total Environ. 2004, 326, 151–180, doi:10.1016/j.scitotenv.2003.11.021.
[18]  Harrison, R.M.; Jones, A.M.; Biggins, P.D.E.; Pomeroy, N.; Cox, C.S.; Kidd, S.P.; Hobman, J.L.; Brown, N.L.; Beswick, A. Climate factors influencing bacterial count in background air samples. Int. J. Biometeorol. 2004, 49, 167–178. 15290434
[19]  Katial, R.K.; Zhang, Y.; Jones, H.J.; Dyer, P.D. Atmospheric mold spore counts in relation to meteorological parameters. Int. J. Biometeorol. 1997, 41, 17–22, doi:10.1007/s004840050048.
[20]  Kellogg, C.A.; Griffin, D.W.; Garrison, V.H.; Peak, K.K.; Royall, N.; Smith, R.R.; Shinn, E.A. Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 2004, 20, 99–110, doi:10.1023/B:AERO.0000032947.88335.bb.
[21]  Griffin, D.W. Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia 2004, 20, 135–140, doi:10.1023/B:AERO.0000032948.84077.12.
[22]  Wainwright, M.; Wickramasinghe, N.C.; Narlikar, J.V.; Rajaratnam, P. Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol. Lett. 2003, 218, 161–165, doi:10.1111/j.1574-6968.2003.tb11513.x.
[23]  Imshenetsky, A.A.; Lysenko, S.V.; Kasakov, G.A. Upper boundary of the biosphere. Appl. Environ. Microbiol. 1978, 35, 1–5. 623455
[24]  Isard, S.A.; Gage, S.H. Flow of Life in the Atmosphere: An Airscape Approach to Understanding Invasive Organisms; Michigan State University Press: Detroit, MI, USA, 2001; p. 304.
[25]  Prospero, J.M.; Blades, E.; Mathison, G.; Naidu, R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 2005, 21, 1–19, doi:10.1007/s10453-004-5872-7.
[26]  Griffin, D.W.; Kellogg, C.A.; Garrison, V.H.; Lisle, J.T.; Borden, T.C.; Shinn, E.A. Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia 2003, 19, 143–157, doi:10.1023/B:AERO.0000006530.32845.8d.
[27]  Kellogg, C.A.; Griffin, D.W. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 2006, 21, 638–644, doi:10.1016/j.tree.2006.07.004.
[28]  Perkins, S. Dust, the thermostat. Sci. News 2001, 160, 200–201, doi:10.2307/4012776.
[29]  Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth Sci. Rev. 2001, 56, 179–204, doi:10.1016/S0012-8252(01)00067-8.
[30]  Moulin, C.; Lambert, C.E.; Dulac, F.; Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic oscillation. Nature 1997, 387, 691–694, doi:10.1038/42679.
[31]  Perry, K.D.; Cahill, T.A.; Eldred, R.; Dutcher, D.D. Long-range transport of North African dust to the eastern United States. J. Geophys. Res. 1997, 102, 11225–11238, doi:10.1029/97JD00260.
[32]  Prospero, J.M.; Lamb, P.J. African droughts and dust transport to the Caribbean: Climate change implications. Science 2003, 302, 1024–1027, doi:10.1126/science.1089915.
[33]  Middleton, N.J.; Goudie, A.S. Saharan dust: Sources and trajectories. Trans. Inst. Br. Geogr. NS 2001, 26, 165–181, doi:10.1111/1475-5661.00013.
[34]  Betzer, P.R.; Carder, K.L.; Duce, R.A.; Merrill, J.T.; Tindale, N.W.; Uematsu, M.; Costello, D.K.; Young, R.W.; Feely, R.A.; Breland, J.A.; et al. Long-range transport of giant mineral aerosol particles. Nature 1988, 336, 568–571, doi:10.1038/336568a0.
[35]  Grousset, F.E.; Ginoux, P.; Bory, A.; Biscaye, P.E. Case study of a Chinese dust plume reaching the French Alps. Geophys. Res. Lett. 2003, 30, doi:10.1029/2002GL016833.
[36]  Rahn, K.A.; Boyrs, R.D.; Shaw, G.E.; Schutz, L.; Jaenicke, R. Long-Range Impact of Desert Aerosol on Atmospheric Chemistry: Two Examples. In Saharan Dust; Fenner, F., Ed.; John Wiley and Sons: Chichester, UK, 1977; pp. 243–266.
[37]  Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477, doi:10.1128/CMR.00039-06.
[38]  Ho, H.-M.; Rao, C.Y.; Hsu, H.-H.; Chiu, Y.-H.; Liu, C.-M.; Chao, H.J. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos. Environ. 2005, 39, 5839–5850, doi:10.1016/j.atmosenv.2005.06.034.
[39]  Wu, P.-C.; Tsai, J.-C.; Li, F.-C.; Lung, S.-C.; Su, H.-J. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmos. Environ. 2004, 38, 4879–4886, doi:10.1016/j.atmosenv.2004.05.039.
[40]  Yeo, H.-G.; Kim, J.-H. SPM and fungal spores in the ambient air of west Korea during the Asian dust (Yellow sand) period. Atmos. Environ. 2002, 36, 5437–5442, doi:10.1016/S1352-2310(02)00672-6.
[41]  Weir-Brush, J.R.; Garisson, V.H.; Smith, G.W.; Shinn, E.A. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms. Aerobiologia 2004, 20, 119–126, doi:10.1023/B:AERO.0000032949.14023.3a.
[42]  Choi, D.-S.; Park, Y.-K.; Oh, S.-K.; Yoon, H.-J.; Kim, J.-C.; Seo, W.-J.; Cha, S.-H. Distribution of airborne microorganisms in yellow sands of Korea. J. Microbiol. 1997, 35, 1–9.
[43]  Griffin, D.W.; Garrison, V.H.; Herman, J.R.; Shin, E.A. African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia 2001, 17, 203–213, doi:10.1023/A:1011868218901.
[44]  Polymenakou, P.N.; Mandalakis, M.; Tselepides, A.; Stephanou, E.G. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environ. Health Persp. 2008, 116, 292–296, doi:10.1289/ehp.116-a292.
[45]  Griffin, D.W.; Kellogg, C.A. Dust storms and their impact on ocean and human health: Dust in Earth’s atmosphere. EcoHealth 2004, 1, 284–295.
[46]  Burrows, S.M.; Elbert, W.; Lawrence, M.G.; P?schl, U. Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos. Chem. Phys. 2009, 9, 9263–9280, doi:10.5194/acp-9-9263-2009.
[47]  Hospodsky, D.; Yamamoto, N.; Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fung. Appl. Environ. Microbiol. 2010, 76, 7004–7012, doi:10.1128/AEM.01240-10.
[48]  Maron, P.-A.; Lejon, D.P.H.; Carvalho, E.; Bizet, K.; Lemanceau, P.; Ranjard, L.; Mougel, C. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos. Environ. 2005, 39, 3687–3695, doi:10.1016/j.atmosenv.2005.03.002.
[49]  DeSantis, T.Z.; Brodie, E.L.; Moberg, J.P.; Zubieta, I.X.; Piceno, Y.M.; Andersen, G.L. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb. Ecol. 2007, 53, 371–383, doi:10.1007/s00248-006-9134-9.
[50]  Brodie, E.L.; DeSantis, T.Z.; Parker, J.P.M.; Zubietta, I.X.; Piceno, Y.M.; Andersen, G.L. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. USA 2007, 104, 299–304, doi:10.1073/pnas.0608255104. 17182744
[51]  Fierer, N.; Liu, Z.; Rodríguez-Hernández, M.; Knight, R.; Henn, M.; Hernandez, M.T. Short-term temporal variability in airborne bacterial and fungal populations. Appl. Environ. Microbiol. 2008, 74, 200–207, doi:10.1128/AEM.01467-07.
[52]  Fr?hlich-Nowoisky, J.; Pickersgill, D.A.; Després, V.R.; P?schl, U. High diversity of fungi in air particulate matter. Proc. Natl. Acad. Sci. USA 2009, 106, 12814–12819, doi:10.1073/pnas.0811003106. 19617562
[53]  Bowers, R.M.; Lauber, C.L.; Wiedinmyer, C.; Hamady, M.; Hallar, A.G.; Fall, R.; Knight, R.; Fierer, N. Characterization of airborne microbial communities at a high elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 2009, 75, 5121–5130, doi:10.1128/AEM.00447-09.
[54]  Pearce, D.A.; Hughes, K.A.; Lachlan-Cope, T.; Harangozo, S.A.; Jones, A.E. Biodiversity of air-borne microorganisms at Halley station, Antarctica. Extremophiles 2010, 14, 145–159, doi:10.1007/s00792-009-0293-8.
[55]  Fahlgren, C.; Hagstr?m, A.; Nilsson, D.; Zweifel, U.L. Annual variations in the diversity, viability, and origin of airborne bacteri. Appl. Environ. Microbiol. 2010, 76, 3015–3025, doi:10.1128/AEM.02092-09.
[56]  Moulin, C.; Chiapello, I. Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophys. Res. Lett. 2006, 33, doi:10.1029/ 2006GL025923.
[57]  Harvell, C.D.; Kim, K.; Burkholder, J.M.; Colwell, R.R.; Epstein, P.R.; Grimes, D.J.; Hofmann, E.E.; Lipp, E.K.; Osterhaus, A.D.M.E.; Overstreet, R.M.; et al. Emerging marine diseases—Climate links and anthropogenic factors. Science 1999, 285, 1505–1510, doi:10.1126/science.285.5433.1505. 10498537
[58]  Hayes, M.L.; Bonaventura, J.; Mitchell, T.P.; Prospero, J.M.; Shinn, E.A.; van Dolan, F.; Barber, R.T. How are climate and marine biological outbreaks functionally linked? Hydrobiologia 2001, 460, 213–220, doi:10.1023/A:1013121503937.
[59]  Smith, G.W.; Ives, L.D.; Nagelkerken, I.A.; Ritchie, K.B. Caribbean sea-fan mortalities. Nature 1996, 383, doi:10.1038/383487a0.
[60]  Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T. African dust and the demise of Caribbean coral reefs. Geophys. Res. Lett. 2000, 27, 3029–3032, doi:10.1029/2000GL011599.
[61]  Prospero, J.M. Saharan dust impacts and climate change. Oceanography 2006, 19, 60–61, doi:10.5670/oceanog.2006.65.
[62]  Braun-Fahrlander, C.; Riedler, J.; Herz, U.; Eder, W.; Waser, M.; Grize, L.; Maisch, S.; Carr, D.; Gerlach, F.; Bufe, A.; et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 2002, 347, 869–877, doi:10.1056/NEJMoa020057.
[63]  Jie, Y.; Houjin, H.; Feng, J.; Jie, X. The role of airborne microbes in school and its impact on asthma, allergy, and respiratory symptoms among school children. Rev. Med. Microbiol. 2011, 22, 84–89, doi:10.1097/MRM.0b013e32834a449c.
[64]  Sultan, B.; Labadi, K.; Guegan, J.F.; Janicot, S. Climate drives the meningitis epidemics onset in West Africa. PLoS Med. 2005, 2, doi:10.1371/journal.pmed.0020006.
[65]  Molesworth, A.M.; Cuevas, L.E.; Conner, S.J.; Morse, A.P.; Thomson, M.C. Environmental risk and meningitis epidemics in Africa. Emerg. Infect. Dis. 2003, 9, 1287–1293, doi:10.3201/eid0910.030182.
[66]  Griffin, D.W.; Westphal, D.L.; Gray, M.A. Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, leg 209. Aerobiologia 2006, 22, 211–226, doi:10.1007/s10453-006-9033-z.
[67]  Brock, T.D.; Freeze, H. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 1969, 98, 289–297. 5781580
[68]  Demirjian, D.C.; Morís-Varas, F.; Cassidy, C.S. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 2001, 5, 144–151, doi:10.1016/S1367-5931(00)00183-6.
[69]  Kato, C.; Takai, K. Microbial diversity of deep-sea extremophiles—Piezophiles, Hyperthermophiles, and subsurface microorganism. Biol. Sci. Space 2000, 14, 341–352, doi:10.2187/bss.14.341.
[70]  Pakchung, A.A.H.; Philippa, S.; Simpson, J.L.; Codd, R. Life on earth. Extremophiles continue to move the goal posts. Environ. Chem. 2006, 3, 77–93, doi:10.1071/EN05093.
[71]  Gregory, P.H. Airborne microbes: Their significance and distribution. Proc. R. Soc. B Biol. Sci. 1971, 177, 469–483, doi:10.1098/rspb.1971.0043.
[72]  Junge, K.; Eicken, H.; Deming, J.W. Bacterial activity at ?2 to ?20 °C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 2004, 70, 550–557, doi:10.1128/AEM.70.1.550-557.2004.
[73]  Deguillaume, L.; Leriche, M.; Amato, P.; Ariya, P.A.; Delort, A.-M.; P?schl, U.; Chaumerliac, N.; Bauer, H.; Flossmann, A.I.; Morris, C.E. Microbiology and atmospheric processes: Chemical interactions of primary biological aerosols. Biogeosciences 2008, 5, 1073–1084, doi:10.5194/bg-5-1073-2008.
[74]  Ochner, U.A.; Vasil, M.L.; Alsabbagh, E.; Parvatiyar, K.; Hassett, J. Role of the Pseudomonas aeruginosa oxyR-oxyG operon in oxidative stress defense and DNA repair: oxyR- dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J. Bacteriol. 2000, 182, 4533–4544, doi:10.1128/JB.182.16.4533-4544.2000. 10913087
[75]  Mueller, D.R.; Vincent, W.F.; Bonilla, S.; Laurion, I. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 2005, 53, 73–87, doi:10.1016/j.femsec.2004.11.001.
[76]  Singer, C.E.; Ames, B.N. Sunlight ultraviolet and bacterial DNA base ratios. Science 1970, 170, 822–825, doi:10.1126/science.170.3960.822. 5473414
[77]  Sundin, G.W.; Jacobs, J.L. Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.). Microb. Ecol. 1999, 38, 27–38, doi:10.1007/s002489900152. 10384007
[78]  Amato, P.; Parazols, M.; Sancelme, M.; Laj, P.; Mailhot, G.; Delort, A.-M. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de D?me: Major groups and growth abilities at low temperature. FEMS Microbiol. Ecol. 2007, 59, 242–254, doi:10.1111/j.1574-6941.2006.00199.x. 17328765
[79]  Amato, P.; Parazols, M.; Sancelme, M.; Mailhot, G.; Laj, P.; Delort, A.-M. An important oceanic source of microorganisms for cloud water at the Puy de D?me (France). Atmos. Environ. 2007, 41, 8253–8263, doi:10.1016/j.atmosenv.2007.06.022.
[80]  Dimmick, R.L.; Wolochow, H.; Chatigny, M.A. Evidence that bacteria can form new cells in airborne particles. Appl. Environ. Microbiol. 1979, 37, 924–927. 384900
[81]  Delort, A.-M.; Va?tilingom, M.; Amato, P.; Sancelme, M.; Parazols, M.; Mailhot, G.; Laj, P.; Deguillaume, L. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. Atmos. Res. 2010, 98, 249–260, doi:10.1016/j.atmosres.2010.07.004.
[82]  Sun, J.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820, doi:10.1016/j.atmosenv.2005.05.052.
[83]  Lundheim, R. Physiological and ecological significance of biological ice nucleators. Philos. Trans. R. Soc. Lond. 2002, 357, 937–943, doi:10.1098/rstb.2002.1082.
[84]  Amato, P.; Demeer, F.; Melaouhi, A.; Fontanella, S.; Martin-Biesse, A.-S.; Sancelme, M.; Laj, P.; Delort, A.-M. A fate for organic acids, formaldehyde and methanol in cloud water: Their biotransformation by microorganisms. Atmos. Chem. Phys. 2007, 7, 4159–4169, doi:10.5194/acp-7-4159-2007.
[85]  Ariya, P.A.; Nepotchatykh, O.; Ignatova, O.; Amyot, M. Microbiological degradation of atmospheric organic compounds. Geophys. Res. Lett. 2002, 29, 2077–2080, doi:10.1029/2002GL015637.
[86]  C?té, V.; Kos, G.; Mortazavi, R.; Ariya, P.A. Microbial and “de novo” transformation of dicarboxylic acids by three airborne fungi. Sci. Total Environ. 2008, 390, 530–537, doi:10.1016/j.scitotenv.2007.10.035.
[87]  Kawamura, K.; Steinberg, S.; Kaplan, I.R. Homologous series of C1-C10 monocarboxylic acids and C1-C6 carbonyls in Los Angeles air and motor vehicle exhausts. Atmos. Environ. 2000, 34, 4175–4191, doi:10.1016/S1352-2310(00)00212-0.
[88]  Kawamura, K.; Steinberg, S.; Ng, L.; Kaplan, I.R. Wet deposition of low molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species in Los Angeles. Atmos. Environ. 2001, 35, 3917–3926, doi:10.1016/S1352-2310(01)00207-2.
[89]  Marinoni, A.; Laj, P.; Sellegri, K.; Mailhot, G. Cloud chemistry at puy de D?me: Variability and relationships with environmental factors. Atmos. Chem. Phys. 2004, 4, 715–728, doi:10.5194/acp-4-715-2004.
[90]  Va?tilingom, M.; Amato, P.; Sancelme, M.; Laj, P.; Leriche, M.; Delort, A.-M. Contribution of microbial activity to carbon chemistry in clouds. Appl. Environ. Microbiol. 2010, 76, 23–29, doi:10.1128/AEM.01127-09.
[91]  Herlihy, L.J.; Galloway, J.N.; Mills, A.L. Bacterial utilization of formic and acetic acid in the rainwater. Atmos. Environ. 1987, 21, 2397–2402, doi:10.1016/0004-6981(87)90374-X.
[92]  Kawamura, K.; Kaplan, I.R. Stabilities of carboxylic acids and phenols in Los Angeles rainwaters during storage. Water Res. 1990, 24, 1419–1423, doi:10.1016/0043-1354(90)90163-Z.
[93]  Amato, P.; Ménager, M.; Sancelme, M.; Laj, P.; Mailhot, G.; Delort, A.-M. Microbial population in cloud water at the Puy de D?me: Implications for the chemistry of clouds. Atmos. Environ. 2005, 39, 4143–4153, doi:10.1016/j.atmosenv.2005.04.002.
[94]  Durand, S.; Amato, P.; Sancelme, M.; Delort, A.-M.; Combourieu, B.; Besse-Hoggan, P. First isolation and characterization of a bacterial strain that biotransforms the herbicide mesotrione. Lett. Appl. Microbiol. 2006, 43, 222–228, doi:10.1111/j.1472-765X.2006.01923.x.
[95]  Fuzzi, S.; Andreae, M.O.; Huebert, B.J.; Kulmala, M.; Bond, T.C.; Boy, M.; Doherty, S.J.; Guenther, A.; Kanakidou, M.; Kawamura, K.; et al. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 2006, 6, 2017–2038, doi:10.5194/acp-6-2017-2006.
[96]  Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. 7535888
[97]  Pace, N.R.; Stahl, D.A.; Lane, D.J.; Olsen, G.J. Analyzing natural microbial populations by rRNA sequences. ASM News 1985, 51, 4–12.
[98]  Béjà, O.; Aravind, L.; Koonin, E.V.; Suzuki, M.T.; Hadd, A.; Nguyen, L.P.; Jovanovich, S.B.; Gates, C.M.; Feldman, R.A.; Spudich, J.L.; et al. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 2000, 289, 1902–1906, doi:10.1126/science.289.5486.1902. 10988064
[99]  Béjà, O.; Spudich, E.N.; Spudich, J.L.; Leclerc, M.; DeLong, E. Proteorhodopsin phototrophy in the ocean. Nature 2001, 411, 786–789, doi:10.1038/35081051. 11459054
[100]  Breitbart, M.; Salamon, P.; Andresen, B.; Mahaffy, J.M.; Segall, A.M.; Mead, D. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 2002, 99, 14250–14255, doi:10.1073/pnas.202488399. 12384570
[101]  Cottrell, M.T.; Moore, J.A.; Kirchman, D.L. Chitinases from uncultured marine microorganisms. Appl. Environ. Microbiol. 1999, 65, 2553–2557. 10347042
[102]  Gillespie, D.E.; Brady, S.F.; Bettermann, A.D.; Cianciotto, N.P.; Liles, M.R.; Rondon, M.R.; Clardy, J.; Goodman, R.M.; Handelsman, J. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 2002, 68, 4301–4306, doi:10.1128/AEM.68.9.4301-4306.2002.
[103]  Hugenholtz, P.; Tyson, G.W. Microbiology: Metagenomics. Nature 2008, 455, 481–483, doi:10.1038/455481a.
[104]  Schmeisser, C.; Steele, H.; Streit, W.R. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 2007, 75, 955–962, doi:10.1007/s00253-007-0945-5.
[105]  Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T.H.; Stege, J.T.; Cayouette, M.; McHardy, A.C.; Djordjevic, G.; Aboushadi, N.; et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 2007, 450, 560–565, doi:10.1038/nature06269. 18033299
[106]  Woyke, T.; Teeling, H.; Ivanova, N.N.; Huntemann, M.; Richter, M.; Gloeckner, F.O.; Boffelli, D.; Anderson, I.J.; Barry, K.W.; Shapiro, H.J.; et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 2006, 443, 950–955, doi:10.1038/nature05192.
[107]  Joint Genome Institute, Metagenomics Program, Exploration of Microbial Communities. Available online: http://genome.jgi.doe.gov/ (accessed on 12 January 2012).
[108]  Tringe, S.G.; Zhang, T.; Liu, X.; Yu, Y.; Lee, W.H.; Yap, J.; Yao, F.; Suan, S.T.; Ing, S.K.; Haynes, M.; et al. The airborne metagenome in an indoor urban environment. PLoS One 2008, 3, doi:10.1371/journal.pone.0001862.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133