Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (MISR) Plume Height Climatology Project and aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). While significant geographic variability was found in the comparison between modeled plumes and satellite-detected plumes, modeled plume heights were lower overall. In the eastern U.S., satellite-detected and modeled plume heights were similar (median height 671 and 660 m respectively). Both satellite-derived and modeled plume injection heights were higher in the western U.S. (2345 and 1172 m, respectively). Comparisons of modeled plume injection height to satellite-derived plume height at the fire location ( R 2 = 0.1) were generally worse than comparisons done downwind of the fire ( R 2 = 0.22). This suggests that the exact injection height is not as important as placement of the plume in the correct transport layer for transport modeling.
References
[1]
Westerling, A.L.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 2006, 313, 940–943, doi:10.1126/science.1128834. 16825536
[2]
Larkin, N.K.; O’Neill, S.M.; Solomon, R.; Raffuse, S.; Strand, T.M.; Sullivan, D.C.; Krull, C.; Rorig, M.; Peterson, J.; Ferguson, S.A. The BlueSky smoke modeling framework. Int. J. Wildland Fire 2009, 18, 906–920, doi:10.1071/WF07086.
[3]
O’Neill, S.M.; Larkin, N.K.; Hoadley, J.; Mills, G.; Vaughan, J.K.; Draxler, R.R.; Rolph, G.; Ruminski, M.; Ferguson, S.A. Regional Real-Time Smoke Prediction Systems. In Wildland Fires and Air Pollution. Development in Environmental Science; Bytnerowicz, A., Arbaugh, M., Andersen, C., Riebau, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 8, pp. 499–534.
[4]
Hodzic, A.; Madronich, S.; Bohn, B.; Massie, S.; Menut, L.; Wiedinmyer, C. Wildfire particulate matter in Europe during summer 2003: Meso-scale modeling of smoke emissions, transport and radiative effects. Atmos. Chem. Phys. 2007, 7, 4743–4764.
[5]
Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.M.; Wynne, K. Estimating emissions from fires in North America. Atmos. Environ. 2006, 40, 3419–3432, doi:10.1016/j.atmosenv.2006.02.010.
[6]
Reid, J.S.; Hyer, E.J.; Prins, E.M.; Westphal, D.L.; Zhang, J.; Wang, J.; Christopher, S.A.; Curtis, C.A.; Schmidt, C.C.; Eleuterio, D.P.; et al. Global monitoring and forecasting of biomass-burning smoke: description of and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 144–162, doi:10.1109/JSTARS.2009.2027443.
[7]
Damoah, R.; Spichtinger, N.; Forster, C.; James, P.; Mattis, I.; Wandinger, U.; Beirle, S.; Wagner, T.; Stohl, A. Around the world in 17 days-hemispheric-scale transport of forest fire smoke from Russia in May 2003. Atmos. Chem. Phys. 2004, 4, 1311–1321.
[8]
Duck, T.J.; Firanski, B.J.; Millet, D.B.; Goldstein, A.H.; Allan, J.; Holzinger, R.; Worsnop, D.R.; White, A.B.; Stohl, A.; Dickinson, C.S. Transport of forest fire emissions from Alaska and the Yukon Territory to Nova Scotia during summer 2004. J. Geophys. Res. 2007, 112, D10–S44.
[9]
Trentmann, J.; Andreae, M.O.; Graf, H.-F.; Hobbs, P.V.; Ottmar, R.D.; Trautmann, T. Simulation of a biomass-burning plume: Comparison of model results with observations. J. Geophys. Res. 2002, 107, 4013–1, doi:10.1029/2001JD000410.
[10]
Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Dias, M.A.F.S.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398, doi:10.5194/acp-7-3385-2007.
[11]
Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. 2005, 110, D24311–1, doi:10.1029/2005JD006318.
[12]
French, N.H.F.; Goovaerts, P.; Kasischke, E.S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res. 2004, 109, D14–S08.
[13]
Breyfogle, S.; Ferguson, S.A. User Assessment of Smoke-Dispersion Models for Wildland Biomass Burning; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1996.
[14]
Turquety, S.; Logan, J.A.; Jacob, D.J.; Hudman, R.C.; Leung, F.Y.; Heald, C.L.; Yantosca, R.M.; Wu, S.; Emmons, L.K.; Edwards, D.P.; et al. Inventory of boreal fire emissions for North America in 2004: Importance of peat burning and pyroconvective injection. J. Geophys. Res. 2007, 112, D12–S03.
[15]
Duncan, B.N.; Strahan, S.E.; Yoshida, Y.B.; Steenrod, S.D.; Livesey, N. Model study of the cross-tropopause transport of biomass burning pollution. Atmos. Chem. Phys. 2007, 7, 3713–3736, doi:10.5194/acp-7-3713-2007.
[16]
Guan, H.; Chatfield, R.B.; Freitas, S.R.; Bergstrom, R.W.; Longo, K.M. Modeling the effect of plume-rise on the transport of carbon monoxide over Africa with NCAR CAM. Atmos. Chem. Phys. 2008, 8, 6801–6812, doi:10.5194/acp-8-6801-2008.
[17]
Hyer, E.J.; Chew, B.N. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmos. Environ. 2010, 44, 1422–1427, doi:10.1016/j.atmosenv.2010.01.043.
[18]
Kahn, R.A.; Li, W.-H.; Moroney, C.; Diner, D.J.; Martonchik, J.V.; Fishbein, E. Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res. 2007, 112, D11205–1, doi:10.1029/2006JD007647.
[19]
Labonne, M.; Bréon, F.M.; Chevallier, F. Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophys. Res. Lett. 2007, 34, L11806–1, doi:10.1029/2007GL029311.
[20]
val Martin, M.; Logan, J.A.; Kahn, R.A.; Leung, F.Y.; Nelson, D.L.; Diner, D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations. Atmos. Chem. Phys. 2010, 10, 1491–1510, doi:10.5194/acp-10-1491-2010.
[21]
Guan, H.; Esswein, R.; Lopez, J.; Bergstrom, R.; Warnock, A.; Follette-Cook, M.; Fromm, M.; Iraci, L.T. A multi-decadal history of biomass burning plume heights identified using aerosol index measurements. Atmos. Chem. Phys. 2010, 10, 6461–6469, doi:10.5194/acp-10-6461-2010.
[22]
Sessions, W.R.; Fuelberg, H.E.; Kahn, R.A.; Winker, D.M. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys. 2011, 11, 5719–5744, doi:10.5194/acp-11-5719-2011.
[23]
Kahn, R.A.; Chen, Y.; Nelson, D.L.; Leung, F.-Y.; Li, Q.; Diner, D.J.; Logan, J.A. Wildfire smoke injection heights: Two perspectives from space. Geophys. Res. Lett. 2008, 35, L04809–1, doi:10.1029/2007GL032165.
[24]
Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803–1, doi:10.1029/2007GL030135.
[25]
Hazard Mapping System Fire and Smoke Product; National Oceanic and Atmospheric Administration: Washington, DC, USA.. Available online: http://www.osdpd.noaa.gov/ml/land/hms.html (accessed on 15 November 2011).
[26]
McNamara, D.P.; Stephens, G.; Ruminski, M.; Kasheta, T. The Hazard Mapping System (HMS)—NOAA’s Multi-Sensor Fire and Smoke Detection Program Using Environmental Satellites. In Proceedings of the 13th Conference on Satellite Meteorology and Oceanography, Norfolk, VA, USA, 22 September 2004.
[27]
USDA Forest Service AirFire Team; Sonoma Technology Inc. BlueSky Gateway: SMARTFIRE. Available online: http://www.getbluesky.org/smartfire (accessed on 15 December 2011).
[28]
Raffuse, S.M.; Sullivan, D.C.; Chinkin, L.R.; Pryden, D.A.; Wheeler, N.J.M.; Larkin, N.K.; Solomon, R.; Soja, A. Integration and Reconciliation of Satellite-Detected and Incident Command-Reported Wildfire Information in the BlueSky Smoke Modeling Framework. In Proceedings of the 6th Annual CMAS Conference, Chapel Hill, NC, USA, 1-3 October 2007.
[29]
National Aeronautics and Space Administration; University of Alabama in Huntsville SMART and Sensor Webs. Available online: http://smartdev.itsc.uah.edu (accessed on 15 December 2011).
[30]
CALIPSO Quality Statements; National Oceanic and Atmospheric Administration: Washington, DC, USA. Available online: http://eosweb.larc.nasa.gov/PRODOCS/calipso/Quality_Summaries (accessed on 15 December 2011).
[31]
Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323, doi:10.1175/2009JTECHA1281.1.
[32]
MISR Plume Height Project; National Oceanic and Atmospheric Administration: Washington, D.C., USA. Available online: http://www.misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes/productDescription/ (accessed on 15 December 2011).
[33]
Nelson, D.L.; Chen, Y.; Kahn, R.A.; Diner, D.J.; Mazzoni, D. Example applications of the MISR INteractive eXplorer (MINX) software tool to wildfire smoke plume analyses. Proc. SPIE 2008, 7089, doi:10.1117/12.795087.
[34]
National Exposure Research Laboratory. In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1999.
[35]
Hoelzemann, J.J.; Schultz, M.G.; Brasseur, G.P.; Granier, C.; Simon, M. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data. J. Geophys. Res. 2004, 109, 4473–4475.
[36]
BlueSky Framework; version 3.0.0; U.S. Forest Service AirFire Team and Sonoma Technology, Inc: Seattle, WA, USA, 2007.
[37]
Sullivan, D.C.; Raffuse, S.M.; Pryden, D.A.; Craig, K.J.; Reid, S.B.; Wheeler, N.J.M.; Chinkin, L.R.; Larkin, N.K.; Solomon, R.; Strand, T. Development and Applications of Systems for Modeling Emissions and Smoke from Fires: The BlueSky Smoke Modeling Framework and SMARTFIRE; Presented at the 17th International Emissions Inventory Conference: Portland, OR, USA, 2008.
[38]
The Fuel Characteristic Classificaion System (FCCS); Fire and Environmental Research Applications Team: Seattle, WA, USA, 2007. version 1.
[39]
Consume; USDA Forest Service Fire and Environmental Research Applications Team: Seattle, WA, USA, 2005. version 3.0.
[40]
Fire Emission Production Simulator (FEPS); Fire and Environmental Research Applications Team: Seattle, WA, USA, 2005. version 1.1.
[41]
SMOKE; Community Modeling and Analysis System at the University of North Carolina Chapel Hill: Chapel Hill, NC, USA, 2006. version 2.3.
[42]
CMAQ; Community Modeling and Analysis System at the University of North Carolina Chapel Hill: Chapel Hill, NC, USA, 2006. version 4.5.1.
[43]
Ottmar, R.D.; Sandberg, D.V.; Prichard, S.J.; Riccardi, C.L. Fuel Characteristic Classification System; Presented at the 2nd International Wildland Fire Ecology and Fire Management Congress: Orlando, FL, USA, 2004.
[44]
McKenzie, D.; Raymond, C.L.; Kellogg, L.K.B.; Norheim, R.A.; Andreu, A.G.; Bayard, A.C.; Kopper, K.E. Mapping fuels at multiple scales: Landscape application of the fuel characteristic classification system. Can. J. Forest Res. 2007, 37, 2421–2437, doi:10.1139/X07-056.
[45]
Air Sciences Inc. Integrated Assessment Update and 2018 Emissions Inventory for Prescribed Fire, Wildfire, and Agricultural Burning; Air Sciences, Inc.: Denver, CO, USA, 2005.
[46]
Briggs, G.A. Plume Rise Equations. In Lectures on Air Pollution and Environmental Impact Analysis; Haugen, D.A., Ed.; AMS: Boston, MA, USA, 1975; pp. 59–111.
[47]
Pasquill, F. The estimation of the dispersion of windborne material. Meteorol. Mag. 1961, 90, 33–49.
[48]
Coats, C.J. High Performance Algorithms in the Sparse Matrix Operator Kernel Emissions Modeling System. In Proceedings of the 9th Joint Conference on Applications of Air Pollution Meteorology of the American Meteorological Society and the Air and Waste Management Association, Atlanta, GA, USA, 28 January–3 February 1996.
[49]
Houyoux, M.R.; Adelman, Z. Quality Assurance Enhancements to the SMOKE Modeling System. In Proceedings of the U.S. Environmental Protection Agency’s International Emission Inventory Conference: One Atmosphere, One Inventory, Many Challenges, Denver, CO, USA, 1–3 May 2001.
[50]
Houyoux, M.; Vukovich, J.; Brandmeyer, J. Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) User Manual; MCNC-North Carolina Supercomputing Center: Research Triangle Park, NC, USA, 2000.
[51]
Houyoux, M.R.; Vukovich, J.M. Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System and Integration with Models-3. In Proceedings of the Air & Waste Management Association’s The Emission Inventory: Regional Strategies for the Future, Raleigh, NC, USA, 26–28 October 1999.
[52]
Sessions, W.R.; Fuelberg, H.E.; Kahn, R.A.; Winker, D.M. An investigation of methods for injecting emissions from boreal wildfires using WRF-Chem during ARCTAS. Atmos. Chem. Phys. 2011, 11, 5719–5744, doi:10.5194/acp-11-5719-2011.
[53]
Stephens, S.L. The application of service oriented software architectures in the fuels treatment community. Int. J. Wildland Fire 2005, 14, 213–222, doi:10.1071/WF04006.
[54]
Liu, Y.; Achtemeier, G.L.; Goodrick, S.L.; Jackson, W.A. Important parameters for smoke plume rise simulation with Daysmoke. Atmos. Pollut. Res. 2010, 1, 250–259.
[55]
Freitas, S.R.; Longo, K.M.; Dias, S.; Chatfield, R.; Artaxo, P.; Andreae, M.O.; Grell, G.; Rodrigues, L.F.; Fazenda, A.; Panetta, J. The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS) Part 1: Model description and evaluation. Atmos. Chem. Phys. 2007, 7, 8525–8569, doi:10.5194/acpd-7-8525-2007.
[56]
Mazzoni, D.; Logan, J.A.; Diner, D.; Kahn, R.; Tong, L.; Li, Q. A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens. Environ. 2007, 107, 138–148, doi:10.1016/j.rse.2006.08.014.