全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Assessment of the Weather Research and Forecasting/Chemistry Model to Simulate Ozone Concentrations in March 2008 over Coastal Areas of the Sea of Japan

DOI: 10.3390/atmos3030288

Keywords: air quality modeling, WRF/Chem, ozone concentrations, coastal area of the Sea of Japan

Full-Text   Cite this paper   Add to My Lib

Abstract:

The fully coupled WRF/Chem (Weather Research and Forecasting/Chemistry) model is used to simulate air quality over coastal areas of the Sea of Japan. The anthropogenic surface emissions database used as input for this model was based primarily on global hourly emissions data (dust, sea salt, and biomass burning), RETRO (REanalysis of the TROpospheric chemical composition), GEIA (Global Emissions Inventory Activity), and POET (Precursors of Ozone and their Effects in the Troposphere). Climatologic concentrations of particulate matter derived from the Regional Acid Deposition Model (RADM2), chemical mechanism, and the Secondary Organic Aerosol Model (MADE/SORGAM) with aqueous reactions were used to deduce the corresponding aerosol fluxes for input to the WRF/Chem model. The model was first integrated continuously over 48 hours, starting from 00:00 UTC on 14 March 2008, to evaluate ozone concentrations and other precursor pollutants. WPS meteorological data were used for the WRF/Chem model simulation in this study. Despite the low resolution of global emissions and the weak density of the local point emissions, it was found that the WRF/Chem model simulates the diurnal variation of the chemical species concentrations over the coastal areas of the Sea of Japan quite well. The Air Quality Management Division of the Ministry of the Environment in Japan selected the maximum level of the air quality standard for ozone, which is 60 ppb. In this study, the atmospheric concentrations of ozone over the coastal area of the Sea of Japan were calculated to be 30–55 ppb during the simulation period, which was lower than the Japanese air quality standard for ozone.

References

[1]  Air Quality in the Mexico Mega City: An Integrated Assessment; Molina, L., Molina, M., Eds.; Massachusetts Institute of Technology: Cambridge ,MA, USA, 2002; p. 408.
[2]  Paul, R.A.; Biller, W.F.; Mccurdy, T. National Estimates of Population Exposure to Ozone. In Presented at Air Pollution Control Association 80th Annual Meeting and Exhibition, New York, NY, USA, 21–26 June 1987.
[3]  Tie, X.; Brasseur, G.; Zhao, C.; Granier, C.; Massie, S.; Qin, Y.; Wang, P.C.; Wang, G.L.; Yang, P.C. Chemical characterization of air pollution in eastern China and the eastern United States. Atmos. Environ. 2006, 40, 2607–2625, doi:10.1016/j.atmosenv.2005.11.059.
[4]  Geng, F.H.; Zhao, C.S.; Tang, X.; Lu, G.L.; Tie, X. Analysis of ozone and VOCs measured in Shanghai: A case study. Atmos. Environ. 2007, 41, 989–1001, doi:10.1016/j.atmosenv.2006.09.023.
[5]  Deng, X.J.; Tie, X.; Wu, D.; Zhou, X.J.; Tan, H.B.; Li, F.; Jiang, C. Long-term trend of visibility and its characterizations in the Pearl River Delta Region (PRD), China. Atmos. Environ. 2008, 42, 1424–1435, doi:10.1016/j.atmosenv.2007.11.025.
[6]  Zhang, Q.; Zhao, C.; Tie, X.; Wei, Q.; Li, G.; Li, C. Characterizations of aerosols over the Beijing region: A case study of aircraft measurements. Atmos. Environ. 2006, 40, 4513–4527, doi:10.1016/j.atmosenv.2006.04.032.
[7]  Sillman, S. The use of NOx, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. 1995, 100, 14175–14188, doi:10.1029/94JD02953.
[8]  Kleinman, L.I.; Daum, P.H.; Imre, D.G.; Lee, J.H.; Lee, Y.N.; Nunnermacker, L.J.; Springston, S.R.; Weinstein-Lloyd, J.; Newman, L. Ozone production in the New York City urban plume. J. Geophys. Res. 2000, 105, 14495–14512, doi:10.1029/2000JD900011.
[9]  Lei, W.; De Foy, B.; Zavala, M.; Volkamer, R.; Molina, L.T. Characterizing ozone production in the Mexico City Metropolitan area, a case study using a chemical transport model. Atmos. Chem. Phys. 2007, 7, 1347–1366, doi:10.5194/acp-7-1347-2007.
[10]  Zhang, R.; Lei, W.; Tie, X.; Hess, P. Industrial Emissions Cause Extreme Diurnal Urban Ozone Variability. In Proceedings of National Academy Science of the United States of America, Washington, DC, USA, 27 April 2004.
[11]  Tie, X.; Madronich, S.; Li, G.H.; Ying, Z.M.; Zhang, R.; Garcia, A.; Lee-Taylor, J.; Liu, Y. Characterizations of chemical oxidants in Mexico City: A regional chemical/dynamical model (WRF/Chem) study. Atmos. Environ. 2007, 41, 1989–2008, doi:10.1016/j.atmosenv.2006.10.053.
[12]  Zavala, M.; Lei, W.; Molina, M.J.; Molina, L.T. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City. Atmos. Chem. Phys. 2009, 9, 39–55, doi:10.5194/acp-9-39-2009.
[13]  Geng, F.H.; Qiang, Z.; Tie, X.; Huang, M.; Ma, X.; Deng, Z.; Quan, J.; Zhao, C. Aircraft measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta region. Atmos. Environ. 2009, 43, 584–593, doi:10.1016/j.atmosenv.2008.10.021.
[14]  Stephens, S.; Madronich, S.; Wu, F.; Olson, J.B.; Ramos, R.; Retama, A.; Munoz, R. Weekly patterns of Mexico City’s surface concentrations of CO, NOx, PM10 and O3 during 1986-2007. Atmos. Chem. Phys. 2008, 8, 5313–5325, doi:10.5194/acp-8-5313-2008.
[15]  Ying, Z.M.; Tie, X.; Li, G.H. Sensitivity of ozone concentrations to diurnal variations of surface emissions in Mexico City: A WRF/Chem modeling study. Atmos. Environ. 2009, 43, 851–859, doi:10.1016/j.atmosenv.2008.10.044.
[16]  Kida, M. Countermeasures on Chemical Substances in Japan by Air Pollution Control Law. Available online: http://infofile.pcd.go.th/air/VOC_kida.pdf?CFID=1412050&CFTOKEN=60317530 (accessed on 10 August 2011).
[17]  United Nations (UN) Statistics Division. Available online: http://unstats.un.org/unsd/methods/m49/m49regin.htm#asia (accessed on 1 April 2010).
[18]  Finlayson-Pitts, B.J.; Pitts, J.N. References. In Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications; Academic Press: San Diego, CA, USA, 2000.
[19]  Seinfeld, J.H.; Pandis, S.N. References. In Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: New York, NY, USA, 1998.
[20]  Thielmann, A.; Prevot, A.S.H.; Staehelin, J. Sensitivity of ozone production derived from field measurements in the Italian Po basin. J. Geophys. Res. 2002, 107, doi:10.1029/2000JD000119.
[21]  Altshuller, A.P.; Lefohn, A.S. Background ozone in the planetary boundary layer over the United States. J. Air Waste Manag. Assoc. 1996, 46, 134–141, doi:10.1080/10473289.1996.10467445.
[22]  Chameides, W.L.; Fehsenfeld, F.; Rodgers, M.O.; Cardelino, C.; Martinez, J.; Parrish, D.; Lonneman, W.; Lawson, D.R.; Rasmussen, R.A.; Zimmerman, P.; Greenberg, J.; Mlddleton, P.; Wang, T. Ozone precursor relationships in the ambient atmosphere. J. Geophys. Res. 1992, 97, 6037–6055, doi:10.1029/91JD03014.
[23]  National Research Council (NRC). References. In Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academy Press: Washington, DC, USA, 1991.
[24]  U.S. Environmental Protection Agency (U.S. EPA). Technology Transfer Network OAR Policy and Guidance. Available online: http://www.epa.gov/ttn/oarpg/t1/fr_notices/3866finalfrnotice.pdf (accessed on 25 March 2005).
[25]  Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; TN-468tSTR; NCAR Technical note. NCAR, Boulder, CO, USA, 2005, 88.
[26]  Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975, doi:10.1016/j.atmosenv.2005.04.027.
[27]  Byun, D.W.; Ching, J.K.S. Science algorithms of the EPA Models-3 Community Multiscale Air Quality Model (CMAQ) Modeling System; EPA/600/R-99/030. US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1999.
[28]  Sistla, G.; Zhou, N.; Hao, W.; Ku, J.Y.; Rao, S.T.; Bornstein, R.; Freedman, F.; Thunis, P. Effects of uncertainties in meteorological inputs on urban airshed model predictions and ozone control strategies. Atmos. Environ. 1996, 30, 2011–2025, doi:10.1016/1352-2310(95)00268-5.
[29]  Jimenez, P.; Jorba, O.; Parra, R.; Baldasano, J.M. Evaluation of MM5-EMICAT2000-CMAQ performance and sensitivity in complex terrain: High resolution application to the northeastern Iberian Peninsula. Atmos. Environ. 2006, 40, 5056–5072, doi:10.1016/j.atmosenv.2005.12.060.
[30]  Mao, Q.; Gautney, L.L.; Cook, T.M.; Jacobs, M.E.; Smith, S.N.; Kelsoe, J.J. Numerical experiments on MM5-CMAQ sensitivity to various PBL schemes. Atmos. Environ. 2006, 30, 3092–3110.
[31]  Zhang, Y.; Liu, P.; Pun, B.; Seigneur, C. A comprehensive performance evaluation of MM5-CMAQ for the summer 1999 southern oxidants study episode—Part I: Evaluation protocols, databases, and meteorological predictions. Atmos. Environ. 2006, 40, 4825–4838, doi:10.1016/j.atmosenv.2005.12.043.
[32]  Otte, T.L. The impact of nudging in the meteorological model for retrospective air quality simulations. Part I: Evaluation against national observation networks. J. Appl. Meteorol. Climat. 2008, 47, 1853–1867, doi:10.1175/2007JAMC1790.1.
[33]  Zhang, Y.; Hu, X.M.; Howell, G.W.; Sills, E.; Fast, J.D.; Gustafson, W.I.; Zaveri, R.A.; Grell, G.A.; Peckham, S.E.; McKeen, S.A. Modeling Atmospheric Aerosols in WRF/Chem. In Proceedings of 6th/15th MM5 Users’ Workshop, Boulder, CO, USA, 27-30 June 2005.
[34]  Fast, J.D.; Gustafson, W.I.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology chemistry aerosol model. J. Geophys. Res. Atmos. 2006, 111, doi:10.1029/2005JD006721.
[35]  Misenis, C.; Hu, X.M.; Krishnan, S.; Zhang, Y.; Fast, J.D. Sensitivity of WRF/Chem Predictions to Meteorological Schemes. In Proceedings of the 86th Annual AMS Annual Meeting, 14th Joint Conference on the Applications of Air Pollution Meteorology with the Air and Waste Management Associated, Atlanta, GA, USA, 27 January-3 February; 2006.
[36]  Jiang, F.; Wang, T.J.; Wang, T.T.; Xie, M.; Zhao, H. Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF-CHEM. Atmos. Environ. 2008, 42, 8717–8727, doi:10.1016/j.atmosenv.2008.08.034.
[37]  De Foy, B.; Fast, J.D.; Paech, S.J.; Phillips, D.; Walters, J.T.; Coulter, R.L.; Martin, T.J.; Pekour, M.S.; Shaw, W.J.; Kastendeuch, P.P.; Marley, N.A.; Retama, A.; Molina, L.T. Basin scale wind transports during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmos. Chem. Phys. 2008, 8, 1209–1224, doi:10.5194/acp-8-1209-2008.
[38]  Tie, X.; Madronich, S.; Li, G.; Ying, Z.; Weinheimer, A.; Apel, E.; Campos, T. Simulation of Mexico City plumes during the MIRAGE-Mex field campaign using the WRF-Chem model. Atmos. Chem. Phys. 2009, 9, 4621–4638, doi:10.5194/acp-9-4621-2009.
[39]  Zhang, Y.; Dubey, M.K.; Olsen, S.C.; Zheng, J.; Zhang, R. Comparisons of WRF/Chem simulations in Mexico City with ground-based RAMA measurements during the 2006-MILAGRO. Atmos. Chem. Phys. 2009, 9, 3777–3798, doi:10.5194/acp-9-3777-2009.
[40]  Chatani, S.; Sudo, K. Influences of the variation in inflow to East Asia on surface ozone over Japan during 1996-2005. Atmos. Chem. Phys. 2011, 11, 8745–8758, doi:10.5194/acp-11-8745-2011.
[41]  Masanori, N.; Masayuki, T.; Hajime, A.; Masahisa, N.; Tomohiro, N.; Tetsu, S.; Yuzo, M. Evaluation of vertical ozone profiles simulated by WRF/Chem using lidar-observed data. SOLA 2007, 3, 133–136, doi:10.2151/sola.2007-034.
[42]  Kurokawa, J.; Ohara, T.; Uno, I.; Hayasaki, M.; Tanimoto, H. Influence of meteorological variability on interannual variations of the springtime boundary layer ozone over Japan during 1981-2005. Atmos. Chem. Phys. 2009, 9, 6287–6304, doi:10.5194/acp-9-6287-2009.
[43]  Kurokawa, J.; Ohara, T.; Uno, I.; Hayasaki, M. Analysis of episodic pollution of photochemical ozone during 8-9 May 2007 over Japan using the nesting RAMS/CMAQ modeling system. J. Japan Soc. Atmos. Environ. 2008, 43, 209–224.
[44]  Hayasaki, M.; Ohara, T.; Kurokawa, J.; Uno, I.; Shimizu, A. Episodic pollution of photochemical ozone during 8-9 May 2007 over Japan: Observational data analysis. J. Japan Soc. Atmos. Environ. 2008, 43, 225–237. (in Japanese).
[45]  Saikawa, E.; Kurokawa, J.; Takigawa, M.; Mauzerall, D. L.; Horowitz, L. W.; Ohara, T. The impact of China’s vehicle emissions on regional air quality in 2000 and 2020: A scenario analysis. Atmos. Chem. Phys. Discuss. 2011, 11, 13141–13192, doi:10.5194/acpd-11-13141-2011.
[46]  Wesley, M.L. Parameterization of surface resistance to gaseous dry deposition in regional numerical models. Atmos. Environ. 1989, 16, 1293–1304.
[47]  Madronich, S.; Flocke, S. References. In The Handbook of Environmental Chemistry; Springer-Verlag: Heidelberg, Berlin, Germany, 1999; pp. 1–26.
[48]  Tie, X.; Madronich, S.; Walters, S.; Zhang, R.; Rasch, P.; Collins, W. Effect of clouds on photolysis and oxidants in the troposphere. J. Geophys. Res. 2003, 108, doi:10.1029/2003JD003659.
[49]  Chang, J.S.; Middleton, P.B.; Stockwell, W.R.; Walcek, C.J.; Pleim, J.E.; Lansford, H.H.; Madronich, S.; Binkowski, F.S.; Seaman, N.L.; Stauffer, D.R. The Regional Acid Deposition Model and Engineering Model; Report No. 4; NAPAP SOS/T: Washington, DC, USA, 1989.
[50]  Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 2001, 106, 28275–28293, doi:10.1029/2001JD000384.
[51]  S Korea Bid to Solve Sea Dispute. BBC News, 2007. Available online: http://news.bbc.co.uk/2/hi/asia-pacific/6240051.stm (accessed on 8 January 2007).
[52]  The Ministry of Foreign Affairs and Trade, Republic of Korea (MFAT). Report on the Progress in Consultations on the Naming of the Sea Area between the Korean Peninsula and the Japanese Archipelago. In Proceedings of Ninth United Nations Conference on the Standardization of Geographical Names, 21-30 August 2007. E/CONF.98/CRP.81. United Nations Economic and Social Council: New York, NY, USA.
[53]  David, W.A.; Ashby, N.; Hodge, C.C. The Science of Timekeeping. Hewlett-Packard; Application Note No. 1289. Allan’s Time Interval Metrology Enterprise: Fountain Green, UT, USA, 1997.
[54]  Hanado, Y.; Imamura, K.; Kotake, N.; Nakagawa, F.; Shimizu, Y.; Tabuchi, R.; Takahashi, Y.; Hosokawa, M.; Morikawa, T. The new generation system of Japan standard time at NICT. Int. J. Nav. Observ. 2008, doi:10.1155/2008/841672.
[55]  Binkowski, F.S.; Shankar, U. The regional particulate matter model, 1. Mode description and preliminary results. J. Geophys. Res. 1995, 100, 26191–26209, doi:10.1029/95JD02093.
[56]  Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. J. Amer. Met. Soc. 2004, 132, 103–120.
[57]  Ahmad, N.; Linderman, J. A godunov-type finite volume scheme for meso- and micro-scale flows in three dimensions. Pure Appl. Geophys. 2008, 165, 1929–1939, doi:10.1007/s00024-008-0402-0.
[58]  Baldauf, M.; Skamarock, W.C. An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core. In Proceedings of8th International SRNWP-Workshop on Non-Hydrostatic Modelling, Bad Orb, Germany, 26-28 October 2009.
[59]  Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave. J. Geophys. Res. 1997, 102, 16663–16682, doi:10.1029/97JD00237.
[60]  Shin, H.H.; Hong, S.-Y.; Dudhia, J.; Kim, Y.-J. Orography-induced gravity wave drag parameterization in the global WRF: Implementation and sensitivity to shortwave radiation schemes. Adv. Meteorol. 2010, 2010, doi:10.1155/2010/959014.
[61]  Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
[62]  Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Slov. Acad. Sci. 1954, 151, 163–187. (in Russian).
[63]  Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108, 8851–8867, doi:10.1029/2002JD003296.
[64]  Janjic, Z.I. The step-mountain coordinate: Physical package. Mon. Wea. Rev. 1990, 118, 1429–1443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.
[65]  Janjic, Z.I. The step-mountain ETA coordinate model: Further development of the convection, viscous sub-layer, and turbulent closure schemes. Mon. Wea. Rev. 1994, 122, 927–945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
[66]  Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, doi:10.1029/2002GL015311.
[67]  Stockwell, W.R.; Middleton, P.; Chang, J.S. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. 1990, 95, 16343–16367, doi:10.1029/JD095iD10p16343.
[68]  Wesley, M.L. Parameterization of surface resistance to gaseous dry deposition in regional numerical models. Atmos. Environ. 1989, 16, 1293–1304.
[69]  Guenther, A.B.; Zimmerman, P.R.; Harley, P.C.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 1993, 98, 12609–12617, doi:10.1029/93JD00527.
[70]  Guenther, A.; Zimmerman, P.; Wildermuth, M. Natural volatile organic compound emission rate estimates for US woodland landscapes. Atmos. Environ. 1994, 28, 1197–1210, doi:10.1016/1352-2310(94)90297-6.
[71]  Madronich, S. Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res. 1987, 92, 9740–9752, doi:10.1029/JD092iD08p09740.
[72]  Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. 2001, 106, 28275–28293, doi:10.1029/2001JD000384.
[73]  Freitas, S.R.; Longo, K.; Silva Dias, M.; Silva Dias, P.; Chatfield, R.; Prins, E.; Artaxo, P.; Grell, Y.G.; Recuero, F. Monitoring the transport of biomass burning emissions in South America. Environ. Fluid Mech. 2005, 5, 135–167, doi:10.1007/s10652-005-0243-7.
[74]  Longo, K.; Freitas, S. R.; Setzer, A.; Prins, E.; Artaxo, P.; Andreae, M. The coupled aerosol and tracer transport model to the Brazilian developments on the regional atmospheric modeling system (CATT-BRAMS). Part 2: Model sensitivity to the biomass burning inventories. Atmos. Chem. Phys. Discuss. , 2007, 8571–8595.
[75]  Granier, C.; Niemeir, U.; Muller, J. F.; Olivier, J.; Peters, J.; Richter, A.; Nuss, H.; Burrows, J. Variation of the Atmospheric Composition over the 1990-2000 Period; EU project EVK2-1999-00011, Report No. 6. POET: Paris, France, 2003.
[76]  Olivier, J.; Peters, J.; Granier, C.; Petron, G.; Muller, J.F.; Wallens, S. Present and Future Surface Emissions of Atmospheric Compounds; EU project EVK2-1999-00011, POET report No. 2. POET POET: Paris, France, 2003.
[77]  Schultz, M. RETRO team. RETRO Emission Trends and Variability. Presented at 1st ACCENT Symposium, Urbino, Italy, 12–16 September 2005; 2005. Available online: http://retro.enes.org/index.shtml (accessed on 8 April 2008).
[78]  Olivier, J.G.J.; Bouwman, A.F.; Van der Maas, C.W.M.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Zandveld, P.Y.J.; Haverlag, J.L. Description Of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozone-Depleting Substances for All Anthropogenic and Mos-Natural Sources on a Per Country Basis and On a 1 × 1 Grid; RIVM report No. 771060 002. RIVM: Bilthoven, The Netherlands, 1996. Available online: http://www.mnp.nl/edgar/introduction (accessed on 5 October 2010).
[79]  Olivier, J.G.J.; Bloos, J.P.J.; Berdowski, J.J.M.; Visschedijk, A.J.H.; Bouwman, A.F. A 1990 global emission inventory of anthropogenic sources of carbon monoxide on 1 × 1 developed in the framework of EDGAR/GEIA. Chemosphere: Global Change Sci. 1999, 1, 1–17, doi:10.1016/S1465-9972(99)00019-7.
[80]  Olivier, J.G.J.; Berdowski, J.J.M.; Peters, J.A.H.W.; Bakker, J.; Visschedijk, A.J.H.; Bloos, J.-P.J. Applications of EDGAR. Including a Description of EDGAR 3.0: Reference Database with Trend Data for 1970-1995; Bilthoven; RIVM report no. 773301 001/ NOP report no. 410200 051. RIVM: Bilthoven, The Netherlands, 2001.
[81]  Van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Giglio, L.; Kasibhatla, P.S.; Avelino, A.; Olsen, S.C.; Kasischke, E.S. Continental-scale partitioning of fire emissions during the 1997-2001 El Nino/La Nina period. Science, 2004, 303. Available online: http://daac.ornl.gov/VEGETATION/guides/global_fire_emissions_v2.1.html. (accessed on 22 June 2010).
[82]  Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S. Interannual variability in global biomass burning emission from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441, doi:10.5194/acp-6-3423-2006.
[83]  Andres, R.J.; Fielding, D.J.; Marland, G.; Boden, T.A.; Kumar, N. Carbon dioxide emissions from fossil-fuel use 1751-1950. Tellus 1999, 51, 759–765, doi:10.1034/j.1600-0889.1999.t01-3-00002.x.
[84]  Saiki, M. Annual Report on Atmospheric and Marine Environment Monitoring: Observation Results for 2008; No. 10. Global Environment and Marine Department,Japan Meteorological Agency (JMA): Tokyo, Japan, 2010.
[85]  Segami, A. Annual Report on Atmospheric and Marine Environment Monitoring: Observation result for 2009; No. 11. Global Environment and Marine Department,Japan Meteorological Agency (JMA): Tokyo, Japan, 2011.
[86]  National Institute for Environmental Studies. Observation Data Download for Pollutant Concentration in the Atmospheric Environment. Available online: http://www.nies.go.jp/igreen/td_down.html (accessed on 20 July 2010) (in Japanese).
[87]  Ministry of the Environment (MOE). The Status of Atmosphere Pollution. Available online: http://www.env.go.jp/air/osen/index.html (accessed on 20 August 2010) (in Japanese).
[88]  Simpson, D.; Olendrzynacuteski, K.; Semb, A.; Storen, E.; Unger, S. Photochemical Oxidant Modeling In Europe: Multi-Annual Modeling and Source Receptor Relationships; EMEP MSC-W Report 3/97. Norwegian Meteorological Institute: Oslo, Norway, 1997.
[89]  Giorgi, F.; Meleux, F. Modelling the regional effects of climate change on air quality. C. R. Geosci. 2007, 339, 721–733, doi:10.1016/j.crte.2007.08.006.
[90]  Hirofumi, A. Air Pollution Control Policy in Japan for Mitigating Sulphur Emission. In Presentation of the International Conference on Transboundary Air Pollution in North-East Asia, Tokyo, Japan, 17–19 December 2008.
[91]  Val, B. Cyclones and Anticyclones in the Mid-Latitudes. Available online: www.aos.wisc.edu/~aos101vb/val_cyclones.ppt (accessed on 2 January 2010).
[92]  National Weather Service. Available online: http://www.srh.weather.gov/srh/jetstream/index.htm (accessed on 24 October 2006).
[93]  Vautard, R.; Honore, C.; Beekmanna, M.; Rouil, L. Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmos. Environ. 2005, 39, 2957–2967, doi:10.1016/j.atmosenv.2005.01.039.
[94]  Seaman, N.L. Meteorological modeling for air-quality assessments. Atmos. Environ. 2000, 34, 2231–2259, doi:10.1016/S1352-2310(99)00466-5.
[95]  Logan, J.A. Ozone in rural areas of the United States. J. Geophys. Res. 1989, 94, 8511–8532, doi:10.1029/JD094iD06p08511.
[96]  Parrish, D.D.; Buhr, M.P.; Trainer, M.; Norton, R.B.; Shimshock, J.P.; Fehsenfeld, C.F.; Anlauf, K.G.; Bottenheim, J.W.; Tang, Y.Z.; Wiebe, H.A.; Roberts, J.M.; Tanner, R.L.; Newman, L.; Bowersox, V.C.; Olszyna, K.J.; Bailey, E.M.; Rodgers, M.O.; Wang, T.; Berresheim, H.; Roychowdhury, U.K.; Demerjiani, K.L. The total oxidized nitrogen levels and the partitioning between the individual species at six rural sites in eastern North America. J. Geophys. Res. 1993, 98, 2927–2939, doi:10.1029/92JD02384.
[97]  Trainer, M.; Williams, E.J.; Parrish, D.D.; Buhr, M.P.; Allwine, E.J.; Westberg, H.H.; Fehsenfeld, F.C.; Liu, S.C. Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 1987, 329, 705–707, doi:10.1038/329705a0.
[98]  Warneck, P. Chemistry of the Natural Atmosphere; Academic Press Inc.: London, UK, 1988.
[99]  National Research Council (NRC). References. In Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academy Press: Washington, DC, USA, 1992.
[100]  Lin, X.; Trainer, M.; Liu, S.C. On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. 1988, 93, 15879–15888, doi:10.1029/JD093iD12p15879.
[101]  Levy, H.; Moxim, W.J.; Klonecki, A.A.; Kasibhatla, P.S. Simulated tropospheric NOx: Its evaluation, global distribution and individual source contributions. J. Geophys. Res. 1999, 104, 26279–26306, doi:10.1029/1999JD900442.
[102]  Johnson, C.; Henshaw, J.; McInnes, G. Impact of aircraft and surface emissions of nitrogen oxides on tropospheric ozone and global warming. Nature 1992, 355, 69–71, doi:10.1038/355069a0.
[103]  Stoddard, J.L.; Jeffries, D.S.; Lukeville, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogget, J.H.; et al. Regional trends in aquatic recovery from acidification in North America and Europe. Nature 1999, 401, 575–578, doi:10.1038/44114.
[104]  Stoddard, J.L.; Jeffries, D.S.; Lükewille, A.; Clair, T.A.; Dillon, P.J.; Driscoll, C.T.; Forsius, M.; Johannessen, M.; Kahl, J.S.; Kellogg, J.H.; et al. Sources and chemistry of NOx in the upper troposphere over the United States. Geophys. Res. Lett. 1998, 25, 1705–1708, doi:10.1029/97GL03591.
[105]  Stohl, A.; Eckhardt, S.; Forster, C.; James, P.; Spichtinger, N. On the pathways and timescales of intercontinental air pollution transport. J. Geophys. Res. 2002, 107, doi:10.1029/2001JD001396.
[106]  Murphy, D.; Fahey, D.; Profitt, M.; Liu, S.; Chan, K.; Eubank, C.; Kawa, S.; Kelly, K. Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper troposphere. J. Geophys. Res. 1993, 98, 8751–8773, doi:10.1029/92JD00681.
[107]  Von Kuhlmann, R.; Lawrence, M.G.; Crutzen, P.J.; Rasch, P.J. A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results. J. Geophys. Res. 2003, 108, doi:10.1029/2002JD002893.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133