全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

The Spring-Time Boundary Layer in the Central Arctic Observed during PAMARCMiP 2009

DOI: 10.3390/atmos3030320

Keywords: Arctic boundary layer, dropsonde, airborne lidar, sea ice thickness

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Arctic atmospheric boundary layer (AABL) in the central Arctic was characterized by dropsonde, lidar, ice thickness and airborne in situ measurements during the international Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP) in April 2009. We discuss AABL observations in the lowermost 500 m above (A) open water, (B) sea ice with many open/refrozen leads (C) sea ice with few leads, and (D) closed sea ice with a front modifying the AABL. Above water, the AABL had near-neutral stratification and contained a high water vapor concentration. Above sea ice, a low AABL top, low near-surface temperatures, strong surface-based temperature inversions and an increase of moisture with altitude were observed. AABL properties and particle concentrations were modified by a frontal system, allowing vertical mixing with the free atmosphere. Above areas with many leads, the potential temperature decreased with height in the lowest 50 m and was nearly constant above, up to an altitude of 100–200 m, indicating vertical mixing. The increase of the backscatter coefficient towards the surface was high. Above sea ice with few refrozen leads, the stably stratified boundary layer extended up to 200–300 m altitude. It was characterized by low specific humidity and a smaller increase of the backscatter coefficient towards the surface.

References

[1]  Allison, I.; Beland, M.; Alverson, K.; Bell, R.; Carlson, D.; Danell, K.; Ellis-Evans, C.; Fahrbach, E.; Fanta, E.; Fujii, Y.; Glaser, G.; Goldfarb, L.; Hovelsrud, G.; Huber, J.; Kotlyakov, V.; Krupnik, I.; Lopez-Martinez, J.; Mohr, T.; Qin, D.; Rachold, V.; Rapley, C.; Rogne, O.; Sarukhabian, E.; Summerhayes, C.; Xiao, C. The Scope of Science for the International Polar Year 2007/2008; WMO/TD-No. 1364. World Meteorological Organization: Geneva, Switzerland, 2007; p. 79.
[2]  Vance, A.K.; Taylor, J.P.; Hewison, T.J.; Elms, J. Comparison of in situ humidity data from aircraft, dropsonde, and radiosonde. J. Atmos. Ocean. Technol. 2004, 21, 921–932, doi:10.1175/1520-0426(2004)021<0921:COISHD>2.0.CO;2.
[3]  Shupe, M.D.; Uttal, T.; Matrosov, S.Y. Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteorol. 2005, 44, 1544–1562, doi:10.1175/JAM2297.1.
[4]  Kahl, J.D.W.; Zaitseva, N.A.; Khattatov, V.; Schnell, R.C.; Bacon, D.M.; Bacon, J.; Radionov, V.; Serreze, M.C. Radiosonde observations from the former Soviet “north pole” series of drifting ice stations, 1954–1990. Bull. Am. Meteorolog. Soc. 1999, 80, 2019–2026, doi:10.1175/1520-0477(1999)080<2019:ROFTFS>2.0.CO;2.
[5]  Beesley, J.A.; Bretherton, C.S.; Jakob, C.; Andreas, E.L.; Intrieri, J.M.; Uttal, T.A. A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp. J. Geophys. Res. 2000, 105, 12337–12349.
[6]  Dethloff, K.; Abegg, C.; Rinke, A.; Hebestadt, I.; Romanov, V.F. Sensitivity of Arctic climate simulations to different boundary-layer parameterizations in a regional climate model. Tellus 2001, 53A, 1–26.
[7]  Tjernstr?m, M.; Zagar, M.; Svensson, G.; Cassano, J.J.; Pfeifer, S.; Rinke, A.; Wyser, K.; Dethloff, K.; Jones, C.; Semmler, T.; Shaw, M. Modelling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Bound. Lay. Meteorol. 2005, 117, 337–381, doi:10.1007/s10546-004-7954-z.
[8]  Dorn, W.; Dethloff, K.; Rinke, A. Limitations of a coupled regional climate model in the reproduction of the observed Arctic sea-ice retreat. Cryosphere Discuss. 2012, 6, 1269–1306, doi:10.5194/tcd-6-1269-2012.
[9]  Curry, J.A.; Ebert, E.E.; Herman, G.F. Mean and turbulence structure of the summertime Arctic cloudy boundary layer. Q.J.R. Meteorol. Soc. 1988, 114, 715–746, doi:10.1002/qj.49711448109.
[10]  Brümmer, B. Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Bound. Lay. Meteorol. 1996, 80, 109–125, doi:10.1007/BF00119014.
[11]  Persson, P.O.G.; Fairall, C.W.; Andreas, E.L.; Guest, P.S.; Perovich, D.K. Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res. 2002, 107, doi:10.1029/2000JC000705.
[12]  Duynkerke, P.G.; De Roode, S.R. Surface energy balance and turbulence characteristics observed at the SHEBA ice camp during FIRE III. J. Geophys. Res. 2001, 106, 15313–15322, doi:10.1029/2000JD900537.
[13]  Overland, J.E.; McNutt, S.L.; Groves, J.; Salo, S.; Andreas, E.L.; Persson, P.O.G. Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. J. Geophys. Res. 2000, 105, 14093–14102, doi:10.1029/1999JC000010.
[14]  Brümmer, B.; Busack, B.; Hoeber, H.; Kruspe, G. Boundary-layer observations over water and Arctic sea-ice during on-ice air flow. Bound. Lay. Meteorol. 1994, 68, 75–108, doi:10.1007/BF00712665.
[15]  Curry, J.A.; Hobbs, P.V.; King, M.D.; Randall, D.A.; Minnis, P.; Isaac, G.A.; Pinto, J.O.; Uttal, T.; Bucholtz, A.; Cripe, D.G.; Gerber, H.; Fairall, C.W.; Garrett, T.J.; Hudson, J.; Intrieri, J.M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.; Pilewskie, P.; Rangno, A.; Rogers, D.C.; Strawbridge, K.B.; Valero, F.P.J.; Williams, A.G.; Wylie, D. Fire Arctic clouds experiment. Bull. Am. Meteorol. Soc. 2000, 81, 5–29.
[16]  Vihma, T.; Hartmann, J.; Lüpkes, C. A case study of an on-ice air flow over the Arctic marginal sea-ice zone. Bound. Lay. Meteorol. 2003, 107, 189–217, doi:10.1023/A:1021599601948.
[17]  Zuidema, P.; Baker, B.; Han, Y.; Intrieri, J.; Key, J.; Lawson, P.; Matrosov, S.; Shupe, M.; Stone, R.; Uttal, T. An Arctic springtime mixed-phase cloudy boundary layer observed during SHEBA. J. Atmos. Sci. 2005, 62, 160–176, doi:10.1175/JAS-3368.1.
[18]  Lüpkes, C.; Schlünzen, K.H. Modelling the Arctic convective boundary-layer with different turbulence parameterizations. Bound. Lay. Meteorol. 1996, 79, 107–130, doi:10.1007/BF00120077.
[19]  Serreze, M.C.; Maslanik, J.A.; Rheder, M.C.; Schnell, R.C.; Kahl, J.D.; Andreas, E.L. Theoretical heights of buoyant convection above open leads in the winter Arctic pack ice cover. J. Geophys. Res. 1992, 97, 9411–9422, doi:10.1029/92JC00688.
[20]  Dare, R.A.; Atkinson, B.W. Atmospheric response to spatial variations in concentration and size of polynyas in the Southern ocean sea-ice zone. Bound. Lay. Meteorol. 2000, 94, 65–88, doi:10.1023/A:1002442212593.
[21]  Guest, P.S. Measuring turbulent heat fluxes over leads using kites. J. Geophys. Res. 2007, 112, doi:10.1029/2006JC003689.
[22]  Schnell, R.C.; Barry, R.G.; Miles, M.W.; Andreas, E.L.; Radke, L.F.; Brock, C.A.; McCormick, M.C.; Moore, J.L. Lidar detection of leads in Arctic sea ice. Lett. Nat. 1989, 339, 530–532, doi:10.1038/339530a0.
[23]  Andreas, E.L.; Cash, B.A. Convective heat transfer over wintertime leads and polynyas. J. Geophys. Res. 1999, 104, 25721–25734, doi:10.1029/1999JC900241.
[24]  Lüpkes, C.; Vihma, T.; Birnbaum, G.; Wacker, U. Influence of leads in sea ice on the temperature of the atmospheric boundary layer during polar night. Geophys. Res. Lett. 2008, 35, doi:10.1029/2007GL032461.
[25]  Stone, R.; Herber, A.; Vitale, V.; Mazzola, M.; Lupi, A.; Schnell, R.; Dutton, E.; Liu, P.; Li, S.-M.; Dethloff, K.; Lampert, A.; Ritter, C.; Stock, M.; Neuber, R.; Maturilli, M. A three-dimensional characterization of Arctic aerosols from airborne sun photometer observations: PAM-ARCMIP—April 2009. J. Geophys. Res. 2010, 115, doi:10.1029/2009JD013605.
[26]  Shaw, G.E. Evidence for a central eurasian source area of Arctic haze in Alaska. Nature 1982, 299, 815–818, doi:10.1038/299815a0.
[27]  Warneke, C.; Bahreini, R.; Brioude, J.; Brock, C.A.; de Gouw, J.A.; Fahey, D.W.; Froyd, K.D.; Holloway, J.S.; Midlebrook, A.; Miller, L.; Montzka, S.; Murphy, D.M.; Peischl, J.; Ryerson, T.B.; Schwarz, J.P.; Spackman, J.R.; Veres, P. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett. 2009, 36, doi:10.1029/2008GL036194.
[28]  Devasthale, A.; Tjernstr?m, M.; Omar, A.H. The vertical distribution of thin features over the Arctic analysed from CALIPSO observations, Part II: Aerosols. Tellus 2011, 63B, 86–95.
[29]  Spackman, J.R.; Gao, R.S.; Neff, W.D.; Schwarz, J.P.; Watts, L.A.; Fahey, D.W.; Holloway, J.S.; Ryerson, T.B.; Peischl, J.; Brock, C.A. Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic. Atmos. Chem. Phys. 2010, 10, 9667–9680, doi:10.5194/acp-10-9667-2010.
[30]  McFarquhar, G.; Ghan, S.; Verlinde, J.; Korolev, A.; Strapp, J.W.; Schmid, B.; Tomlinson, J.M.; Wolde, M.; Brooks, S.D.; Cziczo, D.; Dubey, M.K.; Fan, J.; Flynn, C.; Gultepe, I.; Hubbe, J.; Gilles, M.K.; Laskin, A.; Lawson, P.; Leaitch, W.R.; Liu, P.; Liu, X.; Lubin, D.; Mazzoleni, C.; Macdonald, A.-M.; Moffet, R.C.; Morrison, H.; Ovchinnikov, M.; Shupe, M.D.; Turner, D.D.; Xie, S.; Zelenyuk, A.; Bae, K.; Freer, M.; Glen, A. Indirect and semi-direct aerosol campaign (ISDAC): The impact of Arctic aerosols on clouds. Bull. Amer. Meteorol. Soc. 2011, 92, 183–201.
[31]  Jacob, D.J.; Crawford, J.H.; Maring, H.; Clarke, A.D.; Dibb, J.E.; Emmons, L.K.; Ferrare, R.A.; Hostetler, C.A.; Russell, P.B.; Singh, H.B.; Thompson, A.M.; Shaw, G.E.; McCauley, E.; Pederson, J.R.; Fisher, J.A. The Arctic research of the composition of the troposphere from aircraft and satellites (ARCTAS) mission: Design, execution, and first results. Atmos. Chem. Phys. 2010, 10, 5191–5212.
[32]  Paatero, J.; Vaattovaara, P.; Vestenius, M.; Meinande, O.; Makkonen, U.; Kivi, R.; Hyv?rinen, A.; Asmi, E.; Tjernstr?m, M.; Leck, C. Finnish contribution to the Arctic summer cloud ocean study (ASCOS) expedition, Arctic ocean 2008. Geophysica 2009, 45, 119–146.
[33]  Sedlar, J.; Tjernstr?m, M.; Mauritsen, T.; Shupe, M.D.; Brooks, I.M.; Persson, P.O.G.; Birch, C.E.; Leck, C.; Sirevaag, A.; Nicolaus, M. A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Clim. Dyn. 2011, 37, 1643–1660, doi:10.1007/s00382-010-0937-5.
[34]  Persson, P.O.G. Summary of Meteorological Conditions during the Arctic Mechanisms for the Interaction of the Surface and Atmosphere (AMISA) Intensive Observation Periods; NOAA: Silver Spring, MD, USA. Available online: http://www.lib.muohio.edu/multifacet/record/mu3ugb4202658 (accessed on 10 November 2011).
[35]  Stachlewska, I.; Neuber, R.; Lampert, A.; Ritter, C.; Wehrle, G. AMALi—The Airborne Mobile Aerosol Lidar for Arctic research. Atmos. Chem. Phys. 2010, 10, 2947–2963.
[36]  Stone, R.S. Monitoring Aerosol Optical Depth at Barrow, Alaska and South Pole: Historical Overview, Recent Results, and Future Goals. In Proceedings of the 9th Workshop Italian Research on Antarctic Atmosphere, Bologna, Italy, 22–24 October 2002; Colacino, M., Ed.; pp. 123–144.
[37]  Haas, C.; Hendricks, S.; Eicken, H.; Herber, A. Synoptic airborne thickness surveys reveal state of Arctic sea ice cover. Geophys. Res. Lett. 2010, 37, doi:10.1029/2010GL042652.
[38]  Haas, C.; Lobach, J.; Hendricks, S.; Rabenstein, L.; Pfaffling, A. Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system. J. Appl. Geoph. 2009, 67, 234–241, doi:10.1016/j.jappgeo.2008.05.005.
[39]  Freese, D.; Kottmeier, C. Radiation exchange between stratus clouds and polar marine surfaces. Bound. Lay. Meteorol. 1998, 87, 331–356, doi:10.1023/A:1000992701127.
[40]  Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Zhou, X.; Haginoya, S. Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. 2005, doi:10.1029/2004JD005566.
[41]  Guenther, B.; Xiong, X.; Salomonson, V.V.; Barnes, W.L.; Young, J. On-orbit performance of the earth observing system (EOS) moderate resolution imaging spectroradiometer (MODIS) and the Attendant Level 1-B Data Product. Remote Sens. Environ. 2002, 83, 16–30, doi:10.1016/S0034-4257(02)00097-4.
[42]  The Generic Mapping Tools. Available online: http://gmt.soest.hawaii.edu/ (accessed 1 April 2012).
[43]  Paluch, I.R.; Lenschow, D.H.; Wang, Q. Arctic boundary layer in the fall season over open and frozen sea. J. Geophys. Res. 1997, 102, 25955–25971.
[44]  Ruffieux, D.; Persson, P.O.G.; Fairall, C.W.; Wolfe, D.E. Ice pack and lead surface energy budget during LEADEX 1992. J. Geophys. Res. 1995, 100, 4593–4612.
[45]  Kahl, J.D.W.; Martinez, D.A.; Zaitseva, N.A. Long-term variability in the low-level inversion layer over the Arctic ocean. Int. J. Climatol. 1996, 16, 1297–1313.
[46]  Overland, J.E. Meteorology of the Beaufort sea. J. Geophys. Res. 2009, 114, doi:10.1029/2008JC004861.
[47]  Burk, S.D.; Fett, R.W.; Englebretson, R.E. Numerical simulation of cloud plumes emanating from Arctic leads. J. Geophys. Res. 1997, 102, 16,529–16,544.
[48]  Lüpkes, C.; Vihma, T.; Birnbaum, G.; Dierer, S.; Garbrecht, T.; Gryanik, V.M.; Gryschka, M.; Hartmann, J.; Heinemann, G.; Kaleschke, L.; Raasch, S.; Savij?rvi, H.; Schlünzen, K.H.; Wacker, U. Arctic Climate Change: The ACSYS Decade and Beyond; Springer Science and Business Media: New York, NY, USA, 2012; Volume Chapter 7, pp. 279–324.
[49]  Bannehr, L.; Schwiesow, R. A technique to account for the misalignment of pyranometers installed on aircraft. J. Atmos. Ocean. Tech. 1993, 10, 774–777, doi:10.1175/1520-0426(1993)010<0774:ATTAFT>2.0.CO;2.
[50]  Freese, D. Solar and Terrestrial Radiation Interaction between Arctic Sea Ice and Clouds; Report on Polar Research No. 312; Alfred Wegener Institute: Bremerhaven, Germany, 1999.
[51]  Lampert, A.; Ehrlich, A.; D?rnbrack, A.; Jourdan, O.; Gayet, J.-F.; Mioche, G.; Shcherbakov, V.; Ritter, C.; Wendisch, M. Microphysical and radiative characterization of a subvisible midlevel arctic ice cloud by airborne observations—A case study. Atmos. Chem. Phys. 2009, 9, 2647–2661.
[52]  Schramm, J.L.; Holland, M.M.; Curry, J.A.; Ebert, E.E. Modeling the thermodynamics of a sea ice thickness distribution 1. Sensitivity to ice thickness resolution. J. Geophys. Res. 1997, 102, 23079–23091, doi:10.1029/97JC01297.
[53]  Martin, S.; Drucker, R.; Kwok, R.; Holt, B. Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from special sensor microwave/imager data, 1990–2001. J. Geophys. Res. 2004, 109, doi:10.1029/2004JC002428.
[54]  Walter, B.A.; Overland, J.E.; Turet, P. A comparison of satellite-derived and aircraft-measured regional surface sensible heat fluxes over the Beaufort Sea. J. Geophys. Res. 1995, 100, 4585–4591, doi:10.1029/94JC02653.
[55]  Van den Kroonenberg, A.; Bange, J. Turbulent flux calculation in the polar stable boundary layer: Multiresolution flux decomposition and wavelet analysis. J. Geophys. Res. 2007, 112, doi:10.1029/2006JD007819.
[56]  Tjernstr?m, M.; Leck, C.; Persson, P.O.G.; Jensen, M.L.; Oncley, S.P.; Targino, A. The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001 (AOE-2001). Bull. Am. Meteorol. Soc. 2004, 85, 1305–1321, doi:10.1175/BAMS-85-9-1305.
[57]  Pinto, J.O. Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci. 1998, 55, 2016–2038, doi:10.1175/1520-0469(1998)055<2016:AMPCBL>2.0.CO;2.
[58]  Drüe, C.; Heinemann, G. Airborne investigation of Arctic boundary-layer fronts over the marginal ice zone of the Davis Strait. Bound. Lay. Meteorol. 2001, 101, 261–292, doi:10.1023/A:1019223513815.
[59]  Hoffmann, A.; Ritter, C.; Stock, M.; Shiobara, M.; Lampert, A.; Maturilli, M.; Orgis, T.; Neuber, R.; Herber, A. Ground-based lidar measurements from Ny-?lesund during ASTAR 2007. Atmos. Chem. Phys. 2009, 9, 9059–9081, doi:10.5194/acp-9-9059-2009.
[60]  Hoffmann, A.; Osterloh, L.; Stone, R.; Lampert, A.; Ritter, C.; Stock, M.; Tunved, P.; Hennig, T.; B?ckmann, C.; Li, S.-M.; Eleftheriadis, K.; Maturilli, M.; Orgis, T.; Herber, A.; Neuber, R.; Dethloff, K. Remote sensing and in-situ measurements of tropospheric aerosol, a PAMARCMiP case study. Atmos. Environ. 2012, 52, 56–66, doi:10.1016/j.atmosenv.2011.11.027.
[61]  Dutton, E.G.; Deluisi, J.J.; Herbert, G. Shortwave aerosol optical depth of Arctic haze measured on board the NOAA WP-3D during AGASP-II, April 1986. J. Atmos. Chem. 1989, 9, 71–79, doi:10.1007/BF00052825.
[62]  Hansen, A.D.A.; Novakov, T. Aerosol black carbon measurements in the Arctic haze during AGASP-II. J. Atmos. Chem. 1989, 9, 347–361, doi:10.1007/BF00052842.
[63]  Orgis, T.; Brand, S.; Schwarz, U.; Handorf, D.; Dethloff, K.; Kurths, J. Influence of interactive stratospheric chemistry on large-scale air mass exchange in a global circulation model. Eur. Phys. J. , 174, 257–269.
[64]  Borys, R.D. Studies of ice nucleation by Arctic aerosol on AGASP-II. J. Atmos. Chem. 1989, 9, 169–185, doi:10.1007/BF00052831.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133