全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model

DOI: 10.3390/atmos3030352

Keywords: fire model, fire spread, smoke, prescribed fires, plume model, air quality

Full-Text   Cite this paper   Add to My Lib

Abstract:

Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns) are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of vertical transport of heat and particulate matter and therefore plume rise. Daysmoke, an empirical-stochastic plume rise model designed for simulating wildland fire plumes, requires updraft core number as an input. In this study, updraft core number was gained via a cellular automata fire model applied to an aerial ignition prescribed burn conducted at Eglin AFB on 6 February 2011. Typically four updraft cores were simulated in agreement with a photo-image of the plume showing three/four distinct sub-plumes. Other Daysmoke input variables were calculated including maximum initial updraft core diameter, updraft core vertical velocity, and relative emissions production. Daysmoke simulated a vertical tower that mushroomed 1,000 m above the mixing height. Plume rise was validated by ceilometer. Simulations with two temperature profiles found 89–93 percent of the PM 2.5 released during the flaming phase was transported into the free atmosphere above the mixing layer. The minimal ground-level smoke concentrations were verified by a small network of particulate samplers. Implications of these results for inclusion of wildland fire smoke in air quality models are discussed.

References

[1]  Wade, D.D.; Brock, B.L.; Brose, P.H.; Grace, J.B.; Hoch, G.A.; Patterson, W.A., III. Fire in Eastern Ecosystems. In Wildland Fire in Ecosystems: Effects of Fire on Flora; Brown, J.K., Smith, J.K., Eds.; Department of Agriculture: Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2000; Volume 2 Chapter 4, pp. 53–96.
[2]  Achtemeier, G.L. Effects of moisture released during forest burning on fog formation and implications for visibility. J. Appl. Meteorol. Climatol. 2008, 47, 1287–1296, doi:10.1175/2007JAMC1721.1.
[3]  Achtemeier, G.L. On the formation and persistence of superfog in woodland smoke. Meteorol. Appl. 2009, 16, 215–225, doi:10.1002/met.110.
[4]  Naeher, L.P.; Achtemeier, G.L.; Glitzenstein, J.S.; MacIntosh, D.; Streng, D.R. Real-time and time-integrated PM2.5 and CO from prescribed burns in chipped and non-chipped plots—Firefighter and community exposure and health implications. J. Expo. Sci. Environ. Epidemiol. 2006. Available online: http://www.nature.com/doifinder/10.1038/sj.jea.7500497 (accessed on 10 July 2012).
[5]  Lee, S.; Russell, A.G.; Baumann, K. Source apportionment of fine particulate matter in the southeastern United States. J. Air Waste Manag. Assoc. 2007, 57, 1123–1135, doi:10.3155/1047-3289.57.9.1123.
[6]  Hu, Y.M.; Odman, T.; Chang, M.E.; Jackson, W.; Lee, S.; Edgerton, E.S.; Baumann, K. Simulation of air quality impacts from prescribed fires on an urban area. Environ. Sci. Technol. 2008, 42, 3676–3682.
[7]  Byun, D.W.; Ching, J. Science Algorithms of the EPA Model-3 Community Multiscale Air Quality (CMAQ) Modeling System; EPA/600/R-99/030; National Exposure Research Laboratory: Research Triangle Park, NC, USA, 1999.
[8]  Byun, D.W.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77, doi:10.1115/1.2128636.
[9]  Achtemeier, G.L.; Goodrick, S.A.; Liu, Y.; Garcia-Menendez, F.; Hu, Y.; Odman, M.T. Modeling plume-rise and smoke dispersion from southern United States prescribed burns. Atmosphere 2011, 2, 358–388.
[10]  Oberhuber, J.M.; Herzog, M.; Graf, H.-F.; Schwanke, K. Volcanic plume simulation on large scales. J. Volcanol. Geotherm. Res. 1998, 87, 29–53.
[11]  Herzog, M.; Graf, H.-F.; Textor, C.; Oberhuber, J.M. The effect of phase changes of water on the development of volcanic plumes. J. Volcanol. Geotherm. Res. 1998, 87, 55–74, doi:10.1016/S0377-0273(98)00100-0.
[12]  Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Silva Dias, M.A.F.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398.
[13]  Freitas, S.R.; Longo, K.; Trentmann, J.; Latham, D. Including the Environmental Wind Effects on Smoke Plume Rise of Vegetation Fires in 1D Cloud Models. In Proceedings of the Eighth Symposium on Fire and Forest Meteorology, Kalispell, MT, USA, 13–15 October 2009.
[14]  Liu, Y.Q.; Achtemeier, G.L.; Goodrick, S.; Jackson, W.A. Important parameters for smoke plume rise simulation with Daysmoke. Atmos. Pollut. Res. 2010, 1, 250–259.
[15]  Clarke, K.C.; Brass, J.A.; Riggan, P.J. A cellular automaton model of wildfire propagation and extinction. Photogramm. Eng. Remote Sens. 1994, 60, 1355–1367.
[16]  Clarke, K.C.; Olsen, G. Refining a Cellular Automaton Model for Wildfire Propagation and Extinction. In GIS and Environmental Modeling: Progress and Research Issues; Goodchild, M.F., Louis, T., Steyaert, L.T., Bradley, O., Parks, B.O., Johnston, C., Eds.; John Wiley and Sons Publishers: Hoboken, NJ, USA, 1996.
[17]  Karafyllidis, I.; Thanailakis, A. A model for predicting forest fire spreading using cellular automata. Ecol. Model. 1997, 99, 87–97, doi:10.1016/S0304-3800(96)01942-4.
[18]  Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77.
[19]  Berjak, S.G.; Hearne, J.W. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecol. Model. 2002, 148, 133–151.
[20]  Sullivan, A.L.; Knight, I.K. A Hybrid Cellular Automata/Semi-Physical Model of Fire Growth. In. In Proceedings of the 7th Asia-Pacific Conference on Complex Systems, Cairns, Australia, 6–10 December 2004; pp. 64–73.
[21]  Encinas, A.H.; Encinas, L.H.; White, S.H.; Martin del Rey, A.; Rodriguez Sanchez, G. Simulation of forest fire fronts using cellular automata. Adv. Eng. Softw. 2007, 38, 372–378.
[22]  Yassemi, S.; Dragicevic, S.; Schmidt, M. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behavior. Ecol. Model. 2008, 210, 71–84.
[23]  Adou, J.K.; Billaud, Y.; Brou, D.; Clerc, J.-P.; Consalvi, J.-L.; Fuentes, A.; Kaiss, A.; Nmira, F.; Porterie, B.; Zekri, L.; Zekri, N. Simulating wildfire patterns using a small-world network model. Ecol. Model. 2010.
[24]  Achtemeier, G.L. Field validation of a free-agent cellular automata model of fire spread. Int. J. Wildland Fire 2012.
[25]  Clark, T.L.; Jenkins, M.A.; Coen, J.; Packham, D. A coupled atmospheric-fire model: Convective Froude number and dynamic fingering. Int. J. Wildland Fire 1996, 6, 177–190.
[26]  Linn, R.R.; Cunningham, P. Numerical simulations of grass fires using a coupled atmosphere-fire model: Basic fire behavior and dependence on wind speed. J. Geophys. Res. 2005, 110.
[27]  Flakes, G.W. The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation; MIT Press: Cambridge, MA, USA, 2000.
[28]  Andrews, P.L.; Bevins, C.D.; Seli, R.C. BehavePlus Fire Modeling System, Version 3.0: User’s Guide; Gen. Tech. Rep. RMRS-GTR-106WWW Revised; U.S. Department of Agriculture: Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005.
[29]  Hargrove, W.W.; Gardner, R.H.; Turner, M.G.; Romme, W.H.; Despain, D.G. Simulating fire patterns in heterogeneous landscapes. Ecol. Model. 2000, 135, 243–263, doi:10.1016/S0304-3800(00)00368-9.
[30]  Andrews, P.L. BehavePlus Fire Modeling System Version 4.0: Variables; Gen. Tech. Rep. RMRS-GTR-213WWW; U.S. Department of Agriculture: Forest Service, Rocky Mountain Research Station: Washington, DC, USA, 2008.
[31]  Achtemeier, G.L. Planned burn-Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: Model development and sensitivity tests. Int. J. Wildland Fire 2005, 14, 85–98, doi:10.1071/WF04041.
[32]  Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5); NCAR Tech. Note NCAR/TN-3921STR; NCAR: Boulder, CO, USA, 1994.
[33]  Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; NCAR Technical Note: NCAR/TN-468+STR; NCAR: Boulder, CO, USA, 2005.
[34]  Achtemeier, G.L. Predicting dispersion and deposition of ash from burning cane. Sugar Cane 1998, 1, 17–22.
[35]  Achtemeier, G.L.; Adkins, C.W. Ash and smoke plumes produced from burning sugar cane. Sugar Cane 1997, 2, 16–21.
[36]  Byram, G.M. Combustion of Forest Fuels. In Forest Fire Control and Use; Davis, K.P., Ed.; McGraw Hill: New York, NY, USA, 1959; pp. 155–182.
[37]  Mercer, G.N.; Weber, R.O. Fire Plumes. In Forest Fires: Behavioral and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: New York, NY, USA, 2001.
[38]  Jenkins, M.A.; Clark, T.; Coen, J. Coupling Atmospheric and Fire Models. In Forest Fires: Behavior and Ecological Effects; Johnson, E.A., Miyanishi, K., Eds.; Academic Press: San Diego, CA, USA, 2001; pp. 258–301.
[39]  Clements, C.B.; Zhong, S.; Goodrick, S.; Li, J.; Potter, B.E.; Bian, X.; Heilman, W.E.; Charney, J.J.; Perna, R.; Jang, M.; et al. Observing the dynamics of wildland grass fires: FireFlux-A field validation experiment. Bull. Am. Meteor. Soc. 2007, 88, 1369–1382, doi:10.1175/BAMS-88-9-1369.
[40]  Ottmar, R.D.; Vihnanek, R.E.; Mathey, J.W. Stereo Photo Series for Quantifying Natural Fuels. Vol. VIa: Sand Hill, Sand Pine Scrub, and Hardwoods with White Pine Types in the Southeast United States with Supplemental Sites for Volume VI; PMS 838 NFES 1119; US Department of the Interior: Washington, DC, USA, 2003; p. 22.
[41]  Ottmar, R.D.; Anderson, G.K.; DeHerrera, P.J.; Reinhardt, T.E. Consume Version 2.1 User’s Guide; Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1999. Available online: http://www.fs.fed.us/pnw/fera/products/consume/CONSUME21_USER_GUIDE.DOC (accessed on 10 July 2012).
[42]  Liu, Y.Q.; Goodrick, S.A.; Achtemeier, G.L.; Forbus, K.; Combs, D. Smoke plume height measurements of prescribed burns in the southeastern United States. Int. J. Wildland Fire 2011.
[43]  Liu, Y.Q.; Goodrick, S.; Achtemeier, G.L.; Jackson, W.A.; Qu, J.J.; Wang, W. Smoke incursions into urban areas: Simulation of a Georgia prescribed burn. Int. J. Wildland Fire 2009, 18, 336–348.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133