全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Low-Frequency Rotation of Surface Winds over Canada

DOI: 10.3390/atmos3040522

Keywords: low frequency variability, surface observations, wind direction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hourly surface observations from the Canadian Weather Energy and Engineering Dataset were analyzed with respect to long-term wind direction drift or rotation. Most of the Canadian landmass, including the High Arctic, exhibits a spatially consistent and remarkably steady anticyclonic rotation of wind direction. The period of anticyclonic rotation recorded at 144 out of 149 Canadian meteostations directly correlated with latitude and ranged from 7 days at Medicine Hat (50°N, 110°W) to 25 days at Resolute (75°N, 95°W). Only five locations in the vicinity of the Rocky Mountains and Pacific Coast were found to obey a “negative” ( i.e., cyclonic) rotation. The observed anticyclonic rotation appears to be a deterministic, virtually ubiquitous, and highly persistent feature of continental surface wind. These findings are directly applicable to probabilistic assessments of airborne pollutants.

References

[1]  Mass, C.F.; Ovens, D.; Westrick, K.; Colle, B.A. Does increasing horizontal resolution produce more skillful forecasts? Bound. Lay. Meteorol. 2002, 83, 407–430.
[2]  Horvath, K.; Koracin, D.; Vellore, R.; Jiang, J.; Belu, R. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. 2012, doi:10.1029/2012JD017432.
[3]  Stewart, J.Q.; Whiteman, C.D.; Steenburgh, W.J.; Bian, X. A climatological study of thermally driven wind systems of the US Intermountain West. Bull. Amer. Meteor. Soc. 2002, 83, 699–708, doi:10.1175/1520-0477(2002)083<0699:ACSOTD>2.3.CO;2.
[4]  Rife, D.L.; Davis, C.A.; Liu, Y.; Warner, T.T. Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev. 2004, 132, 2553–2569, doi:10.1175/MWR2801.1.
[5]  Seaman, N.L.; Gaudet, B.J.; Stauffer, D.R.; Mahrt, L.; Richardson, S.J.; Zielonka, J.R.; Wyngaard, J.C. Numerical prediction of submesoscale flow in the nocturnal stable boundary layer over complex terrain. Mon. Wea. Rev. 2012, 140, 956–977, doi:10.1175/MWR-D-11-00061.1.
[6]  Bravo, M.; Mira, T.; Soler, M.R.; Cuxart, J. Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer. Bound. Layer Meteorol. 2008, 128, 77–101, doi:10.1007/s10546-008-9269-y.
[7]  Hamilton, K. General circulation model simulation of the structure and energetic of atmospheric models. Tellus 1987, 39A, 435–459, doi:10.1111/j.1600-0870.1987.tb00320.x.
[8]  Luo, Y.; Manson, A.H.; Meek, C.E.; Meyer, C.K.; Forbes, J.M. The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52 N, 107 W), 1980-1996. J. Geophys. Res. 2000, 105, 2125–2138, doi:10.1029/1999JD900979.
[9]  Luo, Y.; Hall, C.; Manson, A.H.; Meek, C.E.; Meyer, C.K.; Burrage, M.D.; Fritts, D.C.; Hocking, W.K.; MacDougall, J.; Riggin, D.M.; et al. The 16-day planetary waves: Multi-MF radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results. Ann. Geophys. 2002, 20, 691–709, doi:10.5194/angeo-20-691-2002.
[10]  Hodges, K.I.; Hoskins, B.J.; Boyle, J.; Thorncroft, C. A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev. 2003, 131, 2012–2037, doi:10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.
[11]  Wallace, J.M.; Lim, G.H.; Blackmon, M.L. Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci. 1988, 45, 439–462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.
[12]  Dell’Aquila, A.; Lucarini, V.; Ruti, P.M.; Calmanti, S. Hayashi spectra of the northern hemisphere mid-latitude atmospheric variability in the NCEP-NCAR and ECMWF reanalyses. Clim. Dynam. 2005, 25, 639–652, doi:10.1007/s00382-005-0048-x.
[13]  Madden, R.A. Large-scale, free Rossby waves in the atmosphere-An update. Tellus 2007, 59A, 571–590.
[14]  Chambers, F. The diurnal variations of the wind and barometric pressure at Bombay. Phil. Trans. R. Soc. 1873, 163, 1–18, doi:10.1098/rstl.1873.0001.
[15]  Haurwitz, B. Comments on the sea-breeze circulation. J. Meteor. 1947, 4, 1–8, doi:10.1175/1520-0469(1947)004<0001:COTSBC>2.0.CO;2.
[16]  Neumann, J. On the rotation rate of the direction of sea and land breezes. J. Atmos. Sci. 1977, 34, 1913–1917, doi:10.1175/1520-0469(1977)034<1913:OTRROT>2.0.CO;2.
[17]  Kusuda, M.; Alpert, P. Anticlockwise rotation of the wind hodograph. Part I: Theoretical study. J. Atmos. Sci. 1983, 40, 487–499, doi:10.1175/1520-0469(1983)040<0487:ACROTW>2.0.CO;2.
[18]  Gille, S.T.; Llewellyn Smith, S.G.; Lee, S.M. Measuring the sea breeze from QuikSCAT scatterometry. Geophys. Res. Lett. 2003, doi:10.1029/2002GL016230.
[19]  Kuo, A.C.; Polvani, L.M. Nonlinear geostrophic adjustment, cyclone/anticyclone asymmetry, and potential vorticity rearrangement. Phys. Fluids 2000, 12, 1087–1100, doi:10.1063/1.870363.
[20]  Shipton, J. Balance, Gravity Waves and Jets in Turbulent Shallow Water Flows. Ph.D. Thesis, University of Sanit Andrews, Scotland, UK, 2009.
[21]  Alpert, P.; Kusuda, M.; Abe, N. Anticlockwise rotation, eccentricity and tilt angle of the wind hodograph. Part II: An observational study. J. Atmos. Sci. 1984, 51, 3568–3583.
[22]  Furberg, M.; Steyn, D.G.; Baldi, M. The climatology of sea breezes on Sardinia. Intl. J. Climatol. 2002, 22, 917–932.
[23]  Sakazaki, T.; Fujiwara, M. Diurnal variations in summertime surface wind upon Japanese plains: Hodograph rotation and its dynamics. J. Meteor. Soc. Japan 2008, 86, 787–803, doi:10.2151/jmsj.86.787.
[24]  Environment Canada. CWEEDS-Canadian Weather Energy and Engineering Data Set Files. Available online: ftp://arcdm20.tor.ec.gc.ca/pub/dist/climate/CWEEDS_2005/ (accessed on 23 November 2011).
[25]  Fernandes, R.; Korolevych, V.; Wang, S. Trends in land evapotranspiration over Canada for the period 1960-2000 based on in situ climate observations and a land surface model. J. Hydrometeor. 2007, 8, 1016–1030, doi:10.1175/JHM619.1.
[26]  Environment Canada. CDCD-Canadian Daily Climate Data 2 vols. Available online: ftp://arcdm20.tor.ec.gc.ca/pub/dist/CDCD/CDCD_DCQC_2007.zip (accessed on 23 November 2011).
[27]  Mahrt, L. Surface wind direction variability. J. Appl. Meteor. Climatol. 2011, 50, 144–152, doi:10.1175/2010JAMC2560.1.
[28]  Gonella, J. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res. 1972, 19, 833–846.
[29]  Emery, W.J.; Thomson, R.E. Data Analysis Methods in Physical Oceanography; Elsevier: Amsterdam, The Netherland, 2001; pp. 425–432.
[30]  Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indagationes. Math. 1950, 12, 85–91.
[31]  Kendall, M.G. Rank Correlation Methods; Oxford University Press: Oxford, UK, 1975; p. 202.
[32]  Hirsch, R.M.; Helsel, D.R.; Cohn, T.A.; Gilroy, E.J. Statistical Analysis of Hydrologic Data. In Handbook of Hydrology; McGraw-Hill: New York, NY, USA, 1993; p. 17.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133