全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Atmosphere  2012 

Modelling Regional Surface Energy Exchange and Boundary Layer Development in Boreal Sweden — Comparison of Mesoscale Model (RAMS) Simulations with Aircraft and Tower Observations

DOI: 10.3390/atmos3040537

Keywords: RAMS, mesoscale climate, boreal region, Norunda tower, airborne data

Full-Text   Cite this paper   Add to My Lib

Abstract:

Simulation of atmospheric and surface processes with an atmospheric model (RAMS) during a period of ten days in August 2001 over a boreal area in Sweden were compared to tower measurements and aircraft measurements of vertical profiles as well as surface fluxes from low altitude flights. The shape of the vertical profiles was simulated reasonably well by the model although there were significant biases in absolute values. Surface fluxes were less well simulated and the model showed considerable sensitivity to initial soil moisture conditions. The simulations were performed using two different land cover databases, the original one supplied with the RAMS model and the more detailed CORINE database. The two different land cover data bases resulted in relatively large fine scale differences in the simulated values. The conclusion of this study is that RAMS has the potential to be used as a tool to estimate boundary layer conditions and surface fluxes and meteorology over a boreal area but also that further improvement is needed.

References

[1]  Claussen, M.; Cox, P.M.; Zeng, X.; Viterbo, P.; Beljaars, A.C.M.; Betts, R.A.; Bolle, H.-J.; Chase, T.; Koster, R. The Global Climate. In Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System; Springer-Verlag: Heidelberg, Germany, 2004; pp. 33–57.
[2]  Rummukainen, M.; Bergstrom, S.; Persson, G.; Rodhe, J.; Tjernstrom, M. The Swedish Regional Climate Modelling Programme, SWECLIM: A review. Ambio 2004, 33, 176–182.
[3]  Brovkin, V.; Claussen, M.; Driesschaert, E.; Fichefet, T.; Kicklighter, D.; Loutre, M.F.; Matthews, H.D.; Ramankutty, N.; Schaeffer, M.; Sokolov, A. Biogeophysical effects of historical land cover changes simulated by six earth system models of intermediate complexity. Climate Dyn. 2006, 26, 587–600, doi:10.1007/s00382-005-0092-6.
[4]  Bathiany, S.; Claussen, M.; Brovkin, V.; Raddatz, T.; Gayler, V. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 2010, 7, 1383–1399, doi:10.5194/bg-7-1383-2010.
[5]  Eastman, J.L.; Coughenour, M.B.; Pielke, R.A. The regional effects of CO2 and landscape change using a coupled plant and meteorological model. Glob. Change Biol. 2001, 7, 797–815, doi:10.1046/j.1354-1013.2001.00411.x.
[6]  Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys. 1992, 49, 69–91, doi:10.1007/BF01025401.
[7]  Cox, R.; Bauer, B.L.; Smith, T. A mesoscale model intercomparison. Bull. Amer. Meteorol. Soc. 1998, 79, 265–283, doi:10.1175/1520-0477(1998)079<0265:AMMI>2.0.CO;2.
[8]  ENVIRON International Corporation; Mission Research Corporation. MM5/RAMS Fine Grid Meteorological Modelling for September 8–11, 1993 Ozone Episode; TNRCC Report; Texas Natural Resources Conservation Commission: Austin, TX, USA, 2001. Available online: www.tceq.texas.gov./public/implementation/air/am/contracts/reports/mm/MM5-RAMS-FineGridMetModeling.pdf (accessed on 27 October 2012).
[9]  Taylor, C.M.; Harding, R.J.; Pielke, R.A.; Vidale, P.L.; Walko, R.L.; Pomeroy, J.W. Snow breezes in the boreal forest. J. Geophys. Res. 1998, 103, 23087–23101.
[10]  Melas, D.; Persson, T.; de Bruin, H.; Gryning, S.-E.; Batchvarova, E.; Zerefos, C. Numerical model simulations of boundary-layer dynamics during winter conditions. Theor. Appl. Climatol. 2001, 70, 105–116, doi:10.1007/s007040170009.
[11]  Savij?rvi, H.; Amnell, T. High resolution flight observations and numerical simulations: Horizontal variability in the wintertime boreal boundary layer. Theor. Appl. Climatol. 2001, 70, 245–252, doi:10.1007/s007040170018.
[12]  Bergstr?m, H.; Juuso, N. A study of valley winds using the MIUU meso-scale model. Wind Energy 2006, 9, 109–129, doi:10.1002/we.188.
[13]  Chapin, F.S., III; McGuire, A.D.; Randerson, J.; Pielke, R.A.; Baldocchi, D.; Hobbie, S.E.; Roulet, N.; Eugster, W.; Kasischke, E.; Rastetter, E.B.; et al. Arctic and boreal ecosystems of western North America as components of the climate system. Glob. Change Biol. 2000, 6, 211–223, doi:10.1046/j.1365-2486.2000.06022.x.
[14]  Pielke, R.A.; Uliasz, M. Use of meteorological models as input to regional and mesoscale air quality models—Limitations and strengths—Radiative balance and visual air quality. Atmos. Environ. 1998, 32, 1455–1466, doi:10.1016/S1352-2310(97)00140-4.
[15]  Buckley, R.L.; Weber, A.H.; Weber, J.H. Statistical Comparison of Forecast Meteorology with Observations Using the Regional Atmospheric Modeling System. Available online: http://sti.srs.gov/fulltext/ms2001678/ms2001678.html (accessed on 23 September 2011).
[16]  Doty, K. Ad Hoc Meteorological Modeling Group: August 2001 Meeting Summary. Available online: www.epa.gov/scram001/adhoc/sum2001.pdf (accessed on 12 May 2008).
[17]  Sistla, G.; Hao, W.; Ku, J.Y.; Kallos, G.; Zhang, K.S.; Mao, H.T.; Rao, S.T. An operational evaluation of two regional-scale ozone air quality modeling systems over the eastern United State. Bull. Amer. Meteorol. Soc. 2001, 82, 945–964, doi:10.1175/1520-0477(2001)082<0945:AOEOTR>2.3.CO;2.
[18]  Zhang, K.; Mao, H.; Civerolo, K.; Berman, S.; Ku, J.Y.; Rao, S.T.; Doddridge, B.; Philbrick, C.R.; Clark, R. Numerical investigation of boundary-layer evolution and nocturnal low-level jets: Local versus non-local PBL schemes. Environ. Fluid Mech. 2001, 1, 171–208, doi:10.1023/A:1011557402158.
[19]  Fast, J.D. The Relative Role of Local and Regional-Scale Processed on Ozone in Philadelphia. In Proceeding of the Fourth Conference on Atmospheric Chemistry: Urban, Regional, and Global-Scale Impacts of Air Pollutants; American Meteorological Society: Orlando, FL, USA, 2002; pp. 121–124.
[20]  Chandrasekar, A.; Philbrick, R.C.; Doddridge, B.; Clark, R.; Georgopoulos, P. A comparison study of RAMS simulations with aircraft, wind profiler, lidar, tethered balloon and RASS data over Philadelphia during a 1999 summer episode. Atmos. Environ. 2003, 37, 4973–4984, doi:10.1016/j.atmosenv.2003.08.030.
[21]  Atmospheric, Meteorological and Environmental Technologies. Available online: http://atmet.com/ (accessed on 27 October 2012).
[22]  Halldin, S.; Gottschalk, L.; van de Griend, A.A.; Gryning, S.-E.; Heikinheimo, M.; Hogstrom, U.; Jochum, A.; Lundin, L.-C. Science Plan for NOPEX; NOPEX Technical Report No. 12; Uppsala University, NOPEX Central Office: Uppsala, Sweden, 1995; p. 38.
[23]  Halldin, S.; Gottschalk, L.; van de Griend, A.A.; Gryning, S.-E.; Heikinheimo, M.; Hogstrom, U.; Jochum, A.; Lundin, L.-C. NOPEX-A northern hemisphere climate processes land surface experiment. J. Hydrol. 1998, 212–213, 172–187.
[24]  Lundin, L.-C.; Halldin, S.; Lindroth, A.; Cienciala, E.; Grelle, A.; Hjelm, P.; Kellner, E.; Lundberg, A.; M?lder, M.; Moren, A.-S.; et al. Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agr. Forest Meteorol. 1999, 98–99, 53–73.
[25]  Xu, C.-Y.; Seibert, J.; Halldin, S. Regional water balance modelling in the NOPEX area: Development and application of monthly water balance models. J. Hydrol. 1996, 180, 211–236, doi:10.1016/0022-1694(95)02888-9.
[26]  M?lder, M.; Lindroth, A.; Halldin, S. Water vapor, CO2, and temperature profiles in and above a forest—Accuracy assessment of an unattended measurement system. J. Atmos. Ocean. Technol. 2000, 17, 417–425, doi:10.1175/1520-0426(2000)017<0417:WVCATP>2.0.CO;2.
[27]  Grelle, A.; Lindroth, A. Eddy-correlation system for long-term monitoring of fluxes of heat, water vapour and CO2. Global Change Biol. 1996, 2, 297–307, doi:10.1111/j.1365-2486.1996.tb00081.x.
[28]  Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, ü.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 2000, 30, 113–175.
[29]  Gioli, B.; Miglietta, F.; de Martino, B.; Hutjes, R.; Dolman, H.; Lindroth, A.; Schumacher, M.; Sanz, M.; Manca, G.; Peressotti, A.; et al. Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agr. Forest Meteorol. 2004, 127, 1–16, doi:10.1016/j.agrformet.2004.08.004.
[30]  Crawford, T.L.; Dobosy, R.J. A sensitive fast-response probe to measure turbulence and heat flux from any airplane. Bound. Lay. Meteorol. 1992, 59, 257–278, doi:10.1007/BF00119816.
[31]  Mellor, G.L.; Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 1974, 31, 1791–1806, doi:10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.
[32]  Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875, doi:10.1029/RG020i004p00851.
[33]  Helfand, H.M.; Labraga, J.C. Design of a nonsingular level 2.5 second-order closure model for the prediction of atmospheric turbulence. J. Atmos. Sci. 1988, 45, 113–132, doi:10.1175/1520-0469(1988)045<0113:DOANLS>2.0.CO;2.
[34]  Walko, R.L.; Band, L.E.; Baron, J.; Kittel, T.G.F.; Lammers, R.; Lee, T.J.; Ojima, D.S.; Pielke, R.A.; Taylor, C.; Tague, C.; Tremback, C.J.; Vidale, P.L. Coupled atmosphere-biophysics-hydrology models for environmental modeling. J. Appl. Meteor. 2000, 39, 931–944, doi:10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.
[35]  European Centre for Medium-Range Weather Forecasts. Available online: http://www.ecmwf.int/ (accessed on 27 October 2012).
[36]  Uppala, S.M.; Kеllberg, P.W.; Simmons, A.J.; Andrae, U.; da Costa Bechtold, V.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.; Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012, doi:10.1256/qj.04.176.
[37]  Chen, C.; Cotton, W.R. A one-dimensional simulation of the stratocumulus-capped mixed layer. Bound. Lay. Meteorol. 1983, 25, 289–321, doi:10.1007/BF00119541.
[38]  Klemp, J.B.; Wilhelmson, R.B. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci. 1978, 35, 1070–1096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.
[39]  Castelli, S.T.; Morelli, S.; Anfossi, D.; Carvalho, J.; Zauli Sajani, S. Intercomparison of two models, ETA and RAMS, with TRACT field campaign data. Environ. Fluid Dynam. 2004, 4, 157–196.
[40]  Tolk, L.F.; Peters, W.; Meesters, A.G.C.A.; Groenendijk, M.; Vermeulen, A.T.; Steeneveld, G.J.; Dolman, A.J. Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands. Biogeosciences 2009, 6, 2265–2280, doi:10.5194/bg-6-2265-2009.
[41]  Shashkov, A.; Higuchi, K.; Chan, D. Aircraft vertical profiling of variation of CO2 over a Canadian boreal forest site: A role of advection in the changes in the atmospheric boundary layer CO2 content. Tellus 2007, 59B, 234–243.
[42]  Gryning, S.-E.; Batchvarova, E. Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer. Agr. Forest Meteorol. 1999, doi:10.1016/S0168-1923(99)00095-7.
[43]  Carvalho, J.; Anfossi, D.; Trini Castelli, S.; Degrazia, G. Application of a model system for the study of transport and diffusion in complex terrain to the TRACT experiment. Atmos. Environ. 2002, 36, 1147–1161, doi:10.1016/S1352-2310(01)00559-3.
[44]  Denning, A.S.; Nicholls, M.; Prihodko, L.; Baker, I.; Vidale, P.L.; Davis, K.; Bakwin, P. Simulated variations in atmospheric CO2 over a Wisconsin forest using a coupled ecosystem-atmosphere model. Glob. Change Biol. 2003, 9, 1241–1250, doi:10.1046/j.1365-2486.2003.00613.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133