Many cancer treatments rely on inhibition of epidermal growth factor (EGF)-induced cellular responses. Evaluating drug effects on such responses becomes critical to the development of new cancer therapeutics. In this report, we have employed a label-free acoustic sensor, the quartz crystal microbalance with dissipation monitoring (QCM-D), to track the EGF-induced response of mutant MCF10A cells under various inhibitory conditions. We have identified a complex cell de-adhesion process, which can be distinctly altered by inhibitors of signaling pathways and cytoskeleton formation in a dose-dependent manner. The dose dependencies of the inhibitors provide IC 50 values which are in strong agreement with the values reported in the literature, demonstrating the sensitivity and reliability of the QCM-D as a screening tool. Using immunofluorescence imaging, we have also verified the quantitative relationship between the Δ D-response (change in energy dissipation factor) and the level of focal adhesions quantified with the areal density of immunostained vinculin under those inhibitory conditions. Such a correlation suggests that the dynamic restructuring of focal adhesions can be assessed based on the time-dependent change in Δ D-response. Overall, this report has shown that the QCM-D has the potential to become an effective sensing platform for screening therapeutic agents that target signaling and cytoskeletal proteins.
References
[1]
Carpenter, G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem.?1987, 56, 881–914, doi:10.1146/annurev.bi.56.070187.004313.
[2]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell.?2010, 141, 1117–1134, doi:10.1016/j.cell.2010.06.011.
[3]
Scaltriti, M.; Baselga, J. The epidermal growth factor receptor pathway: A model for targeted therapy. Clin. Cancer Res.?2006, 12, 5268–5272, doi:10.1158/1078-0432.CCR-05-1554.
[4]
Osaki, M.; Oshimura, M.; Ito, H. PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis?2004, 9, 667–676, doi:10.1023/B:APPT.0000045801.15585.dd.
[5]
Xie, H.; Pallero, M.A.; Gupta, K.; Chang, P.; Ware, M.F.; Witke, W.; Kwiatkowski, D.J.; Lauffenburger, D.A.; Murphy-Ullrich, J.E.; Wells, A. EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLCgamma signaling pathway. J. Cell. Sci.?1998, 111, 615–624. 9454735
[6]
Zandi, R.; Larsen, A.B.; Andersen, P.; Stockhausen, M.-T.; Poulsen, H.S. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal.?2007, 19, 2013–2023, doi:10.1016/j.cellsig.2007.06.023.
[7]
Sebastian, S.; Settleman, J.; Reshkin, S.J.; Azzariti, A.; Bellizzi, A.; Paradiso, A. The complexity of targeting EGFR signalling in cancer: From expression to turnover. BBA-Rev. Cancer?2006, 1766, 120–139.
[8]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene?2006, 366, 2–16, doi:10.1016/j.gene.2005.10.018.
[9]
Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol.?2005, doi:10.1038/msb4100014.
[10]
Jordan, J.D.; Landau, E.M.; Iyengar, R. Signaling networks: The origins of cellular multitasking. Cell?2000, 103, 193–200, doi:10.1016/S0092-8674(00)00112-4.
[11]
Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol.?2006, 7, 165–176, doi:10.1038/nrm1838.
[12]
Denholm, E.M.; Gerald, P.S. Differential effects of two fluorescent probes on macrophage migration as assessed by manual and automated methods. Cytometry?1995, 19, 366–369, doi:10.1002/cyto.990190412.
[13]
Abbitt, K.B.; Rainger, G.E.; Nash, G.B. Effects of fluorescent dyes on selectin and integrin-mediated stages of adhesion and migration of flowing leukocytes. J. Immunol. Meth.?2000, 239, 109–119, doi:10.1016/S0022-1759(00)00189-7.
[14]
Xi, B.; Naichen, Y.; Xiaobo, W.; Xiao, X.; Yama, A. The application of cell-based label-free technology in drug discovery. Biotechnol. J.?2008, 3, 484–495, doi:10.1002/biot.200800020. 18412175
[15]
Fang, Y. Label-free biosensors for cell biology. Int. J. Electrochem.?2011, doi:10.4061/2011/460850.
[16]
Cooper, M.A. Non-optical screening platforms: The next wave in label-free screening? Drug Discov. Today?2006, 11, 1068–1074, doi:10.1016/j.drudis.2006.10.001.
[17]
Cooper, M.A. Optical biosensors: Where next and how soon? Drug Discov. Today?2006, 11, 1061–1067, doi:10.1016/j.drudis.2006.10.003.
[18]
Fang, Y. Non-invasive optical biosensor for probing cell signaling. Sensors?2007, 7, 2316–2329, doi:10.3390/s7102316.
[19]
Fang, Y.; Ferrie, A.M.; Fontaine, N.H.; Mauro, J.; Balakrishnan, J. Resonant waveguide grating biosensor for living cell sensing. Biophys. J.?2006, 91, 1925–1940, doi:10.1529/biophysj.105.077818.
McDonnell, J.M. Surface plasmon resonance: Towards an understanding of the mechanisms of biological molecular recognition. Curr. Opin. Chem. Biol.?2001, 5, 572–577, doi:10.1016/S1367-5931(00)00251-9.
[22]
Giaever, I.; Keese, C.R. A morphological biosensor for mammalian cells. Nature?1993, 366, 591–592, doi:10.1038/366591a0.
[23]
Chen, J.Y.; Li, M.; Penn, L.S.; Xi, J. Real-time and label-free detection of cellular response to signaling mediated by distinct subclasses of epidermal growth factor receptors. Anal. Chem.?2011, 83, 3141–3146, doi:10.1021/ac200160u. 21438528
[24]
Atienza, J.M.; Yu, N.; Wang, X.; Xu, X.; Abassi, Y. Label-free and real-time cell-based kinase assay for screening selective and potent receptor tyrosine kinase inhibitors using microelectronic sensor array. J. Biomol. Screen.?2006, 11, 634–643, doi:10.1177/1087057106289334.
[25]
Fang, Y.; Ferrie, A.M.; Fontaine, N.H.; Yuen, P.K. Characteristics of dynamic mass redistribution of epidermal growth factor receptor signaling in living cells measured with label-free optical biosensors. Anal. Chem.?2005, 77, 5720–5725, doi:10.1021/ac050887n.
[26]
Liu, F.; Zhang, J.; Deng, Y.; Wang, D.; Lu, Y.; Yu, X. Detection of EGFR on living human gastric cancer BGC823 cells using surface plasmon resonance phase sensing. Sens. Actuator. B: Chem.?2011, 153, 398–403, doi:10.1016/j.snb.2010.11.005.
[27]
Fredriksson, C.; Kihlman, S.; Rodahl, M.; Kasemo, B. The piezoelectric quartz crystal mass and dissipation sensor: A means of studying cell adhesion. Langmuir?1998, 14, 248–251, doi:10.1021/la971005l.
[28]
Rodahl, M.; Hook, F.; Fredriksson, C.; Keller, C.A.; Krozer, A.; Brzezinski, P.; Voinova, M.; Kasemo, B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss.?1997, 107, 229–246, doi:10.1039/a703137h.
[29]
Dixon, M.C. Quartz crystal microbalance with dissipation monitoring: Enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech.?2008, 19, 151–158. 19137101
[30]
Marx, K.A. The quartz crystal microbalance and the electrochemical QCM: Applications to studies of thin polymer films, electron transfer systems, biological macromolecules, biosensors, and cells. Piezoelectric Sens.?2007, 5, 371–424.
[31]
Matsuda, T.; Kishida, A.; Ebato, H.; Okahata, Y. Novel instrumentation monitoring in situ platelet adhesivity with a quartz crystal microbalance. ASAIO J.?1992, 38, M171–M173, doi:10.1097/00002480-199207000-00012.
[32]
Redepenning, J.; Schlesinger, T.K.; Mechalke, E.J.; Puleo, D.A.; Bizios, R. Osteoblast attachment monitored with a quartz crystal microbalance. Anal. Chem.?1993, 65, 3378–3381, doi:10.1021/ac00071a008.
[33]
Gryte, D.M.; Michael, D.W.; Wei-Shou, H. Real-time measurement of anchorage-dependent cell adhesion using a quartz crystal microbalance. Biotechnol. Progr.?1993, 9, 105–108, doi:10.1021/bp00019a016.
[34]
Janshoff, A.; Wegener, J.; Sieber, M.; Galla, H.J. Double-mode impedance analysis of epithelial cell monolayers cultured on shear wave resonators. Eur. Biophys. J.?1996, 25, 93–103, doi:10.1007/s002490050021.
[35]
Wegener, J.; Janshoff, A.; Galla, H.J. Cell adhesion monitoring using a quartz crystal microbalance: Comparative analysis of different mammalian cell lines. Eur. Biophys. J.?1998, 28, 26–37, doi:10.1007/s002490050180.
[36]
Heitmann, V.; Reiss, B.; Wegener, J. The quartz crystal microbalance in cell biology: Basics and applications. Piezoelectric Sens.?2007, 5, 303–338.
[37]
Nimeri, G.; Fredriksson, C.; Elwing, H.; Liu, L.; Rodahl, M.; Kasemo, B. Neutrophil interaction with protein-coated surfaces studied by an extended quartz crystal microbalance technique. Colloid. Surface. B?1998, 11, 255–264, doi:10.1016/S0927-7765(98)00038-1.
[38]
Saitakis, M.; Gizeli, E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell. Mol. Life Sci.?2012, 69, 357–371, doi:10.1007/s00018-011-0854-8.
[39]
Chen, J.Y.; Shahid, A.; Garcia, M.P.; Penn, L.S.; Xi, J. Dissipation monitoring for assessing EGF-induced changes of cell adhesion. Biosens. Bioelectron.?2012, 38, 375–381, doi:10.1016/j.bios.2012.06.018.
[40]
Yang, R.; Chen, J.Y.; Xi, N.; Lai, K.W.C.; Qu, C.; Fung, C.K.M.; enn, L.S.; Xi, J. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation. Exp. Cell Res.?2012, 318, 521–526, doi:10.1016/j.yexcr.2011.12.003.
[41]
Garcia, M.P.; Shahid, A.; Chen, J.Y.; Xi, J. Effects of the expression level of epidermal growth factor receptor on the ligand-induced restructuring of focal adhesions: A QCM-D study. Anal Bioanal Chem.?2012. in press.
[42]
Reginato, M.J.; Mills, K.R.; Paulus, J.K.; Lynch, D.K.; Sgroi, D.C.; Debnath, J.; Muthuswamy, S.K.; Brugge, J.S. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat. Cell Biol.?2003, 5, 733–740, doi:10.1038/ncb1026.
[43]
Dei Tos, A.P.; Ellis, I. Assessing epidermal growth factor receptor expression in tumours: What is the value of current test methods. Eur. J. Cancer?2005, 41, 1383–1392, doi:10.1016/j.ejca.2005.03.018.
Wheelock, M.J.; Johnson, K.R. Cadherins as modulators of cellular phenotype. Annu. Rev. Cell Dev. Biol.?2003, 19, 207–235, doi:10.1146/annurev.cellbio.19.011102.111135.
[46]
Arteaga, C.L. Epidermal growth factor receptor dependence in human tumors: More than just expression. Oncologist?2002, 7, 31–39, doi:10.1634/theoncologist.7-suppl_4-31.
[47]
Balaban, N.Q.; Schwarz, U.S.; Riveline, D.; Goichberg, P.; Tzur, G.; Sabanay, I.; Mahalu, D.; Safran, S.; Bershadsky, A.; Addadi, L.; Geiger, B. Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nat. Cell Biol.?2001, 3, 466–472, doi:10.1038/35074532.
[48]
Beningo, K.A.; Dembo, M.; Kaverina, I.; Small, J.V.; Wang, Y.-l. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol.?2001, 153, 881–888, doi:10.1083/jcb.153.4.881.
Tan, J.L.; Tien, J.; Pirone, D.M.; Gray, D.S.; Bhadriraju, K.; Chen, C.S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA?2003, 100, 1484–1489, doi:10.1073/pnas.0235407100. 12552122
[51]
Rewcastle, G.W.; Palmer, B.D.; Thompson, A.M.; Bridges, A.J.; Cody, D.R.; Zhou, H.; Fry, D.W.; McMichael, A.; Denny, W.A. Tyrosine kinase inhibitors. 10. isomeric 4-[(3-bromophenyl)amino]pyrido[d]-pyrimidines are potent ATP binding site inhibitors of the tyrosine kinase function of the epidermal growth factor receptor. J. Med. Chem.?1996, 39, 1823–1835, doi:10.1021/jm9508651. 8627606
[52]
Schliwa, M. Action of cytochalasin D on cytoskeletal networks. J. Cell Biol.?1982, 92, 79–91, doi:10.1083/jcb.92.1.79.
[53]
Janmey, P.A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev.?1998, 78, 763–781. 9674694
[54]
Papakonstanti, E.A.; Stournaras, C. Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett.?2008, 582, 2120–2127, doi:10.1016/j.febslet.2008.02.064.
Kharait, S.; Tran, K.; Yates, C.; Wells, A. Cell motility in prostate tumor invasion and metastasis. In Cell Motility in Cancer Invasion and Metastasis; Wells, A., Ed.; Springer: Dordrecht, The Netherlands, 2006; Volume 8, pp. 301–338.
[58]
Workman, P.; Clarke, P.A.; Raynaud, F.I.; van Montfort, R.L.M. Drugging the PI3 kinome: From chemical tools to drugs in the clinic. Cancer Res.?2010, 70, 2146–2157, doi:10.1158/0008-5472.CAN-09-4355.
[59]
Thompson, N.; Lyons, J. Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. Curr. Opin. Pharmacol.?2005, 5, 350–356, doi:10.1016/j.coph.2005.04.007.
[60]
Fabian, M.A.; Biggs, W.H.; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotech.?2005, 23, 329–336, doi:10.1038/nbt1068.
[61]
Gollob, J.A.; Wilhelm, S.; Carter, C.; Kelley, S.L. Role of Raf kinase in cancer: Therapeutic potential of targeting the Raf/MEK/ERK signal transduction pathway. Semin. Oncol.?2006, 33, 392–406, doi:10.1053/j.seminoncol.2006.04.002.
[62]
Vlahos, C.J.; Matter, W.F.; Hui, K.Y.; Brown, R.F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem.?1994, 269, 5241–5248. 8106507
[63]
Smith, R.J.; Sam, L.M.; Justen, J.M.; Bundy, G.L.; Bala, G.A.; Bleasdale, J.E. Receptor-coupled signal transduction in human polymorphonuclear neutrophils: Effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther.?1990, 253, 688–697. 2338654
Schroder, R.; Janssen, N.; Schmidt, J.; Kebig, A.; Merten, N.; Hennen, S.; Muller, A.; Blattermann, S.; Mohr-Andra, M.; Zahn, S.; et al. Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat. Biotech.?2010, 28, 943–949, doi:10.1038/nbt.1671.
[66]
Fang, Y. Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev. Technol.?2006, 4, 583–595, doi:10.1089/adt.2006.4.583.
[67]
Fang, Y. Label-free receptor assays. Drug Discovery Today?2010, 7, e5–e11.
[68]
Rocheville, M.; Jerman, J.C. 7TM pharmacology measured by label-free: A holistic approach to cell signalling. Curr. Opin. Pharmacol.?2009, 9, 643–649, doi:10.1016/j.coph.2009.06.015.
[69]
Wakatsuki, T.; Schwab, B.; Thompson, N.C.; Elson, E.L. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J. Cell Sci.?2001, 114, 1025–1036. 11181185
[70]
Fry, D.W.; Nelson, J.M.; Slintak, V.; Keller, P.R.; Rewcastle, G.W.; Denny, W.A.; Zhou, H.; Bridges, A.J. Biochemical and antiproliferative properties of 4-[Ar(alk)ylamino]pyridopyrimidines, a new chemical class of potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. Biochem. Pharmacol.?1997, 54, 877–887, doi:10.1016/S0006-2952(97)00242-6. 9354588
[71]
Shelton, J.G.; Moye, P.W.; Steelman, L.S.; Blalock, W.L.; Lee, J.T.; Franklin, R.A.; McMahon, M.; McCubrey, J.A. Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia?2003, 17, 1765–1782, doi:10.1038/sj.leu.2403052.
[72]
Xie, W.; Peng, H.; Zalkow, L.H.; Li, Y.-H.; Zhu, C.; Powis, G.; Kunkel, M. 3β-Hydroxy-6-aza-cholestane and related analogues as phosphatidylinositol specific phospholipase C (PI-PLC) inhibitors with antitumor activity. Bioorg. Med. Chem.?2000, 8, 699–706, doi:10.1016/S0968-0896(00)00014-6.