全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2011 

Biocompatibility of Niobium Coatings

DOI: 10.3390/coatings1010072

Keywords: niobium coatings, magnetron, osteoblasts, corrosion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS) substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

References

[1]  Jacobs, J.J.; Gilbert, J.L.; Urban, R.M. Corrosion of metal orthopaedic implants. J. Bone Joint Surg. 1998, 80A, 268–282.
[2]  Kawahara, H.; Ochi, S.; Tanetani, K.; Kato, K.; Isogai, M.; Mizuno, Y.; Yamamoto, H.; Yamagami, A. Biological test of dental biomaterials, effect of pure metals upon the mouse subcutaneous fibroblast, strain L cell in tissue cultura. Japan Soc. Dent. Appar. Mater. 1963, 4, 65–85.
[3]  Steinemann, S.G. Wiley: New York, NY, USA, 1980; pp. 1–34.
[4]  Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and osteogenesis of refractoy metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001, 22, 1253–1262.
[5]  Findlay, D.M.; Welldon, K.; Atkins, G.J.; Howie, D.W.; Zannettino, A.C.W.; Bobyn, D. The proliferation and phenotypic expression of human osteoblasts on tantalum metal. Biomaterials 2004, 25, 2215–2227.
[6]  Bobyn, J.D.; Toth, K.K.; Hacking, S.A.; Tanzer, M.; Krygier, J.J. Tissue response to porous tantalum acetabular cups: A canine model. J. Arthoplasty 1999, 14, 347–354.
[7]  Semlitsch, M.F.; Weber, H.; Sttreicher, R.M.; Sch?n, R. Joint replacement components made of hot-forged and surface treated Ti-6Al-7Nb alloy. Biomaterials 1992, 13, 781–788.
[8]  Godmann, S.B.; Davidson, J.A.; Fornasier, V.L.; Mishra, A.K. Histological response to cylinders of a low modulus Titanium alloy (Ti-13Nb-13Zr) and a wear resistant Zirconium alloy (Zr-2.5Nb) implanted in the rabbit tibia. J. Appl. Biomater. 1993, 4, 331–339.
[9]  Metiko?-Hukovi?, M.; Kwokal, A.; Piljac, J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 2003, 24, 3765–3775.
[10]  Eisenbarth, E.; Velten, D.; Müller, M.; Thull, R.; Brene, J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 2004, 25, 5705–5713.
[11]  Castner, D.G.; Ratner, B.D. Biomedical surface science: Foundations to frontiers. Surf. Sci. 2002, 500, 28–60.
[12]  Kasemo, B. Biological surface science. Surf. Sci. 2002, 500, 656–677.
[13]  Ratner, B.D. Surface modifications of polymers: Chemical, biological and surface analytical challenges. Biosens. Bioelectron. 1995, 10, 797–804.
[14]  Smith, D.L. Thin Film Deposition: Principles and Practice; Mc Graw-Hill: New York, NY, USA, 1995.
[15]  Stals, L.M.M.; Nesladek, M.; Quayhaegens, C. Current industrial practice critical issue in hard PVD and PA-CVD coatings. Surf. Coat. Technol. 1997, 91, 230–239.
[16]  Schneider, J.M.; Rohde, S.; Sproul, W.D.; Matthews, A. Recent developments in plasma assisted physical vapour deposition. J. PhysD: Appl. Phys. 2000, 33, R173–R186.
[17]  Bolz, A. Application of thin film technology in biomedical engineering. In Encyclopedic Handbook of Biomaterials and Bioengineering, Part B: Applications; Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Schwartz, E.R., Eds.; Marcel Dekker: New York, NY, USA, 1995.
[18]  Mandl, S.; Rauschenbach, B. Improving the biocompatibility of medical implants with plasma inmersion ion implantation. Surf. Coat. Technol. 2002, 156, 276–283.
[19]  Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mat. Sci. Eng. R. 2002, 36, 143–206.
[20]  Pizzoferrato, A.; Ciapetti, G.; Stea, S.; Cenni, E.; Arciola, C.A.; Granchi, D.; Savarino, L. Cell culture methods for testing biocompatibility. Clin. Mater. 1994, 15, 173–190.
[21]  Leit?o, E.; Barbosa, M.A.; De Groot, K. In vitro testing of surface-modified biomaterials. J. Mater. Sci.: Mater. in Med. 1998, 9, 543–548.
[22]  Manso, M.; Ogueta, S.; Pérez-Rigueiro, J.; García, J.P.; Martínez-Duart, J.M. Testing biomaterials by in-situ evaluation of cell response. Biomol. Eng. 2002, 19, 239–242.
[23]  Olaya, J.J.; Rodil, S.E.; Muhl, S. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films 2008, 516, 8319–8326.
[24]  Ramirez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J. Niobium based coatings for dental implants. Appl. Surf. Sci. 2011, 257, 2555–2559.
[25]  Asselin, E.; Ahmed, T.M.; Alfantazi, A. Corrosion of niobium in sulphuric and hydrochloric solutions at 75 and 95 °C. Corr. Sci. 2007, 49, 694–710.
[26]  Marie, P.J. Human endosteal osteoblastic cells: Relationship with bone formation. Calcif. Tissue Int. 1995, 56, S13–S16.
[27]  Schmidt, C.; Kaspar, D.; Sarkar, M.R.; Claes, L.E.; Ignatius, A.A. A scanning electron microscopy study of human osteoblast morphology on five orthopedic metals. J. Biomed. Mater. Res. 2002, 63, 252–261.
[28]  Lauer, G.; Wiedmann-Al-Ahmad, M.; Otten, J.E.; Hubner, U.; Schmelzeisen, S.W. The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillar osteoblast-like cells in vitro.. Biomaterials 2001, 22, 2799–2809.
[29]  Anselme, K.; Bigerelle, M.; Noel, B.; Iost, A.; Hardouin, P. Effect of grooved titanium substratum on human osteoblastic cell growth. J. Biomed. Mater. Res. 2002, 60, 529–540.
[30]  Rodil, S.E.; Olaya, J.J. Unbalanced magnetic field configuration: Plasma and film properties. J. Phys: Condens. Matter 2006, 18, S1703–S1719.
[31]  ASTM G5-4 “Standard reference test method for making potentiostatic and potentyodinamic anodic polarization measurements”. In Annual Book of ASTM standards; 2000; Volume 3, 02 Wear and Erosion; metal Corrosion, p. 57.
[32]  Chou, W.J.; Yu, G.P.; Huang, J.H. Corrosion resistance of ZrN films on AISI 304 stainless steel substrate. Surf. Coat. Technol. 2003, 167, 59–67.
[33]  Rodil, S.E.; Olivares, R.; Arzate, H.; Muhl, S. Properties of carbon films and their biocompatibility using in vitro tests. Diamond Relat. Mater. 2003, 12, 931–937.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133