A single splat is the building block of a thermal spray coating; thus, investigating single splats is essential to understanding thermal spray coatings and their properties. In this study, the spreading behavior and the morphology of flame sprayed ethylene methacrylic acid (EMAA) splats, deposited at various stand-off distances (SODs) onto glass and mild steel substrates were investigated using optical microscopy, back scattered scanning electron microscopy and secondary electron scanning electron microscopy. The results of this study indicate that the spread factor increases with an increase in the stand-off distance up to 30?cm for glass and 25?cm for steel substrates. Further increase of the stand-off distance results in a decreased spread factor. The aspect ratio of EMAA single splats on both glass and mild steel substrates decreases with increased stand-off distances, indicating that more circular shapes occur at higher stand-off distances. On mild steel substrates, the minimum unevenness ratio (η) occurs at 35?cm SOD. The unevenness ratio (η) on glass substrates decreases from 1.9 (at 20?cm SOD) to 1.77 (at 25?cm SOD), and from 1.8 (at 30?cm SOD) to 1.3 (at 35?cm SOD). The lowest unevenness ratio (η) is found at 35?cm SOD. The highest unevenness ratio (η) is at 25?cm SOD. This paper discusses the effect of surface chemistry on the underside of an EMAA single splat morphology. It includes Raman spectrum analysis of EMAA and the X-ray diffraction of the EMAA powder. This work analyses the splat morphology and classifies the taxonomy of single splats of EMAA.
References
[1]
Fauchais, P.; Fukumoto, M.; Vardelle, A.; Vardelle, M. Knowledge concerning splat formation: An invited review. J. Therm. Spray Technol. 2004, 13, 337–360, doi:10.1361/10599630419670.
[2]
Verdian, M.M.; Salehi, M.; Raeissi, K. Effect of feedstock particle size on microstructure of aps coatings prepared from mechanically alloyed nickel-titanium powders. Surf. Eng. 2010, 26, 447–452, doi:10.1179/026708409X12490360425927.
[3]
Sweet, G.K. Applying Thermoplastic/Thermoset Powder with a Modified Plasma System. In Proceedings of the 1993 National Thermal Spray Conference , Anaheim, CA, USA, 7-11 June 1993; ASM International: Materials Park, OH, USA, 1993; pp. 381–384.
[4]
Vardelle, A.; Moreau, C.; Fauchais, P. The dynamics of deposit formation in thermal-spray processes. MRS Bull. 2000, 25, 32–37.
[5]
Bussmann, M.; Chandra, S.; Mostaghimi, J. Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 2000, 12, 3121–3132, doi:10.1063/1.1321258.
[6]
Herman, H.; Sampath, S.; McCune, R. Thermal spray: Current status and future trends. MRS Bull. 2000, 25, 17–25.
[7]
Jiang, X.; Wan, Y.; Herman, H.; Sampath, S. Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray. Thin Solid Films 2001, 385, 132–141, doi:10.1016/S0040-6090(01)00769-6.
[8]
Tran, A.T.T.; Hyland, M.M.; Qiu, T.; Withy, B.; James, B.J. Effects of surface chemistry on splat formation during plasma spraying. J. Therm. Spray Technol. 2008, 17, 637–645, doi:10.1007/s11666-008-9237-6.
[9]
Tran, A.T.T.; Hyland, M.M.; Shinoda, K.; Sampath, S. Influence of substrate surface conditions on the deposition and spreading of molten droplets. Thin Solid Films 2011, 519, 2445–2456, doi:10.1016/j.tsf.2010.11.047.
[10]
Fukumoto, M.; Nagai, H.; Yasui, T. Influence of surface character change of substrate due to heating on flattening behavior of thermal sprayed particles. J. Therm. Spray Technol. 2006, 15, 759–764, doi:10.1361/105996306X146776.
[11]
Zhao, B.; Yadian, B.L.; Li, Z.J.; Liu, P.; Zhang, Y.F. Improvement on wettability between carbon nanotubes and sn. Surf. Eng. 2009, 25, 31–35, doi:10.1179/026708408X334104.
[12]
Fukumoto, M.; Nishioka, E.; Matsubara, T. Effect of interface wetting on flattening of freely fallen metal droplet onto flat substrate surface. J. Therm. Spray Technol. 2002, 11, 69–74, doi:10.1361/105996302770348998.
[13]
Tanaka, Y.; Fukumoto, M. Investigation of dominating factors on flattening behavior of plasma sprayed ceramic particles. Surf. Coat. Technol. 1999, 120-121, 124-130.
[14]
Christoulis, D.K.; Pantelis, D.I.; Borit, F.; Guipont, V.; Jeandin, M. Effect of Substrate Roughness and Temperature on splat Formation in Plasma Sprayed Aluminium Bronze. In Proceedings of the 18th International Conference on Surface Modification Technologies, Dijon, France, 15-17 November 2004; pp. 73–83.
[15]
Li, R.; Ashgriz, N.; Chandra, S. Maximum spread of droplet on solid surface: Low reynolds and weber numbers. J. Fluids Eng. Trans. Asme 2010, 132, doi:10.1115/1.4001695.
[16]
Fukumoto, M.; Huang, Y. Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface. J. Therm. Spray Technol. 1999, 8, 427–432, doi:10.1361/105996399770350386.
[17]
Fauchais, P.; Vardelle, A.; Dussoubs, B. Quo vadis thermal spraying? J. Therm. Spray Technol. 2001, 10, 44–66, doi:10.1361/105996301770349510.
[18]
Leger, A.C.; Vardelle, M.; Vardelle, A.; Dussoubs, B.; Fauchais, P. Splat formation: Ceramic particles on ceramic substrates. In Proceedings of the 8th National Thermal Spray Conference, Houston, TX, USA, 11-15 September 1995; Sampath, S., Ed.; ASM International: Materials Park, OH, USA, 1995; pp. 169–174.
[19]
Sampath, S.; Jiang, X.Y.; Matejicek, J.; Leger, A.C.; Vardelle, A. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings part I: Case study for partially stabilized zirconia. Mater. Sci. Eng. A 1999, 272, 181–188, doi:10.1016/S0921-5093(99)00459-1.
[20]
Brogan, J.A.; Berndt, C.C. The coalescence of combustion-sprayed ethylene-methacrylic acid copolymer. J. Mater. Sci. 1997, 32, 2099–2106, doi:10.1023/A:1018526906452.
Lin, C.-K. Statistical Approaches to Study Variations in Thermal Spray Coatings Variations in Thermal Spray Coatings. Ph.D. Dissertation. 1995. State University of New York, Stony Brook, NY, USA.
[23]
Withy, B.P.; Hyland, M.M.; James, B.J. The effect of surface chemistry and morphology on the properties of hvaf peek single splats. J. Therm. Spray Technol. 2008, 17, 631–636, doi:10.1007/s11666-008-9250-9.
[24]
Rasband, W.S. Imagej; U.S. National Institutes of Health: Bethesda, MD, USA; 1997-2010.
[25]
Brogan, J.A. Processing and Property Relationships of Thermally Sprayed Polymer Systems. Ph.D. Dissertation. 1996.
[26]
Kang, C.W.; Ng, H.W. Splat morphology and spreading behavior due to oblique impact of droplets onto substrates in plasma spray coating process. Surf. Coat. Technol. 2006, 200, 5462–5477, doi:10.1016/j.surfcoat.2005.07.067.
[27]
Amada, S.; Tomoyasu, K.; Haruyama, M. Splat formation of molten sn, cu and ni droplets. Surface and Coatings Technology 1997, 96, 176–183, doi:10.1016/S0257-8972(97)00083-2.
[28]
Tran, A.T.T.; Hyland, M.M. The role of substrate surface chemistry on splat formation during plasma spray deposition by experiments and simulations. J. Therm. Spray Technol. 2010, 19, 11–23, doi:10.1007/s11666-009-9414-2.
[29]
Jiang, X.; Matejicek, J.; Sampath, S. Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings part II: Case study for molybdenum. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 1999, 272, 189–198, doi:10.1016/S0921-5093(99)00461-X.
[30]
Nishioka, A.; Nishio, M.; Koda, T.; Ikeda, S.; Koyama, K. The effects of metal cation types on zero shear viscosities for ethylene-co-methacrylic ionomer melts. Nihon Reoroji Gakkaishi 2005, 33, 199–204, doi:10.1678/rheology.33.199.
[31]
Bianchi, L.; Grimaud, A.; Blein, F.; Lucchese, P.; Fauchais, P. Comparison of plasma-sprayed alumina coatings by rf and dc plasma spraying. J. Therm. Spray Technol. 1995, 4, 59–66, doi:10.1007/BF02648529.
[32]
Nishioka, A.; Koda, T.; Miyata, K.; Murasawa, G.; Koyama, K. The effects of small contents of water on melt rheology for ethylene-methacrylic zinc ionomers. Polym. J. 2008, 40, 350–353, doi:10.1295/polymj.PJ2007156.