全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Crystals  2012 

Growth Mechanisms of CdS Nanocrystals in Aqueous Media

DOI: 10.3390/cryst2020618

Keywords: CdS nanocrystal, microemulsion, luminescence, dimension distributions, TEM, growth mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

CdS nanocrystals were prepared in water-in-oil microemulsions. The nanocrystal properties, absorption and luminescence spectra and size distributions, were monitored at different times after mixing the microemulsions of the two precursors to obtain information on their growth mechanism. In particular, CdS nanocrystals were prepared using water-in-heptane or water-in-nonane microemulsions. The results obtained from the investigation of nanocrystals prepared using heptane as the organic phase, confirmed that nanocrystal nucleation is fast while their growth is determined by droplet exchange content rate. Size distribution histograms obtained from the sample at early time points after mixing presented a bimodal population having average sizes of 3.0 ± 0.1 and 5.8 ± 0.1 nm, thus indicating that surface process controls the nanocrystal growth. With longer reaction times the occurrence of water droplet coalescence is likely responsible for the formation of nanocrystal agglomerates. Using a water-in-nonane microemulsion, the droplet exchange rate can be modified, thus leading to smaller CdS nanocrystals. However, the development of structural defects cannot be excluded, as evidenced by the luminescence spectra of the suspension. In general, aging of the nanocrystal in the pristine microemulsion resulted in the development of cubic semiconductor nanostructures.

References

[1]  Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.
[2]  Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P.V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. J. Am. Chem. Soc. 2008, 130, 4007–4015.
[3]  Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 2013–2015, doi:10.1126/science.281.5385.2013.
[4]  Larson, D.R.; Zipfel, W.R.; Williams, R.M.; Clark, S.W.; Bruchez, M.P.; Wise, F.W.; Webb, W.W. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science 2003, 300, 1434–1436.
[5]  Amelia, M.; Flamini, R.; Latterini, L. Recovery of CdS Nanocrystal Defects through Conjugation with Proteins. Langmuir 2010, 26, 10129–10134, doi:10.1021/la100249t.
[6]  Zhang, Z.H.; Chin, W.S.; Vittal, J.J. Water-Soluble CdS Quantum Dots Prepared from a Refluxing Single Precursor in Aqueous Solution. J. Phys. Chem. B 2004, 108, 18569–18574, doi:10.1021/jp0470849.
[7]  Gaponik, N.; Talapin, D.V.; Rogach, A.L.; Hoppe, K.; Shevchenko, E.V.; Kornowski, A.; Eychmüller, A.; Weller, H. Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents. NanoLett. 2002, 2, 803–806. and reference therein., doi:10.1021/nl025662w.
[8]  Peng, J.; Wickham, J.; Alivisatos, A.P. Kinetics of II-VI and III-V colloidal Semiconductor nanocrystals growth: “focusing” of size distribution. J. Am. Chem. Soc. 1998, 120, 5343–5344, doi:10.1021/ja9805425.
[9]  Chestnoy, N.; Harris, T.D.; Hull, R.; Brus, L.E. Luminescence and Photophysics of CdS Semiconductor Clusters: The Nature of the Emitting Electronic State. J. Phys. Chem. 1986, 90, 3393–3399, doi:10.1021/j100406a018.
[10]  Simmons, B.A.; Li, S.; John, V.T.; McPherson, G.L.; Bose, A.; Zhou, W.; He, J. Morphology of CdS Nanocrystals Synthesized in a Mixed Surfactant System. NanoLett. 2002, 2, 263–268, doi:10.1021/nl010080k.
[11]  Ganguli, A.K.; Ganguly, A.; Vaidya, S. Microemulsion-based synthesis of nanocrystalline materials. Chem. Soc. Rev. 2010, 39, 474–485, doi:10.1039/b814613f.
[12]  Towey, T.F.; Khan-Lodhi, A.; Robinson, B.H. Kinetic and mechanism of formation of quantum-sized cadmium sulphide nanoparticle in water-aereosol-OT-oil microemulsions. J. Chem. Faraday Trans. 1990, 86, 3757–3762, doi:10.1039/ft9908603757.
[13]  van Embden, J.; Jasieniak, J.; Mulvaney, P. Mapping the Optical Properties of CdSe/CdS Heterostructure Nanocrystals: The Effects of Core Size and Shell Thickness. J. Am. Chem. Soc. 2009, 131, 14299–14309, doi:10.1021/ja9030209.
[14]  Cao, H.; Wang, G.; Zhang, S.; Zhang, X.; Rabinovich, D. Growth and Optical Properties of Wurtzite-Type CdS Nanocrystals. Inorg. Chem. 2006, 45, 5103–5108.
[15]  Petit, C.; Lixon, P.; Pileni, M.P. Synthesis of Cadmium Sulfide in Situ in Reverse Micelles. 2. Influence of the Interface on the Growth of Particles. J. Phys. Chem. 1990, 94, 1598–1603.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413