全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diagnostics  2012 

Cell-Based Biosensors: Electrical Sensing in Microfluidic Devices

DOI: 10.3390/diagnostics2040083

Keywords: biosensor, microfluidics, mammalian cells, electrochemical impedancespectroscopy, medical diagnostics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell-based biosensors provide new horizons for medical diagnostics by adopting complex recognition elements such as mammalian cells in microfluidic devices that are simple, cost efficient and disposable. This combination renders possible a new range of applications in the fields of diagnostics and personalized medicine. The review looks at the most recent developments in cell-based biosensing microfluidic systems with electrical and electrochemical transduction, and relevance to medical diagnostics.

References

[1]  Yan, M.; Huang, X.; Jia, Q.; Nadipalli, R.; Wang, T.; Shang, Y.; Yu, H.; Je, M.; Yeo, K. High-speed CMOS image sensor for high-throughput lensless microfluidic imaging system. Proc. SPIE 2012, doi:10.1117/12.911962.
[2]  Cheng, X.; Chen, G.; Rodriguez, W.R. Micro- and nanotechnology for viral detection. Anal. Bioanal. Chem. 2009, 393, 487–501, doi:10.1007/s00216-008-2514-x.
[3]  Lazcka, O.; Del Campo, F.J.; Munoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217, doi:10.1016/j.bios.2006.06.036.
[4]  Wang, P.; Xu, G.; Qin, L.; Xu, Y.; Li, R. Cell-based biosensors and its application in biomedicine. Sens. Actuator. B Chem. 2005, 108, 576–584, doi:10.1016/j.snb.2004.11.056.
[5]  Banerjee, P.; Bhunia, A.K. Mammalian cell-based biosensors for pathogens and toxins. Trends Biotech. 2009, 27, 179–188, doi:10.1016/j.tibtech.2008.11.006.
[6]  Pancrazio, J.; Whelan, J.; Borkholder, D.; Ma, W.; Stenger, D. Development and application of cell-based biosensors. Ann. Biomed. Eng. 1999, 27, 697–711, doi:10.1114/1.225.
[7]  Cheran, L.E.; Cheung, S.; Wang, X.; Thompson, M. Probing the bioelectrochemistry of living cells. Electrochimi. Acta 2008, 53, 6690–6697, doi:10.1016/j.electacta.2008.01.053.
[8]  Ding, L.; Du, D.; Zhang, X.; Ju, H. Trends in Cell-Based Electrochemical Biosensors. Curr. Med. Chem. 2008, 15, 3160–3170, doi:10.2174/092986708786848514.
[9]  Stott, S.L.; Hsu, C.H.; Tsukrov, D.I.; Yu, M.; Miyamoto, D.T.; Waltman, B.A.; Rothenberg, S.M.; Shah, A.M.; Smas, M.E.; Korir, G.K.; et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 2010, 107, 18392–18397.
[10]  Rosenthal, A.; Macdonald, A.; Voldman, J. Cell patterning chip for controlling the stem cell microenvironment. Biomaterials 2007, 28, 3208–3216, doi:10.1016/j.biomaterials.2007.03.023.
[11]  Kim, L.; Toh, Y.C.; Voldman, J.; Yu, H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 2007, 7, 681–694, doi:10.1039/b704602b.
[12]  Svendsen, W.; Castillo-Len, J.; Lange, J.; Sasso, L.; Olsen, M.; Abaddi, M.; Andresen, L.; Levinsen, S.; Shah, P.; Vedarethinam, I.; Dimaki, M. Micro and nano-platforms for biological cell analysis. Sens. Actuator. A Phys. 2011, 172, 54–60, doi:10.1016/j.sna.2011.02.027.
[13]  Ng, J.; Gitlin, I.; Stroock, A.; Whitesides, G. Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 2002, 23, 3461–3473, doi:10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8.
[14]  Wright, D.; Rajalingam, B.; Karp, J.M.; Selvarasah, S.; Ling, Y.; Yeh, J.; Langer, R.; Dokmeci, M.R.; Khademhosseini, A. Reusable, reversibly sealable parylene membranes for cell and protein patterning. J. Biomed. Mater. Res. A 2008, 85A, 530–538, doi:10.1002/jbm.a.31281.
[15]  Becker, H.; Locascio, L. Polymer microfluidic devices. Talanta 2002, 56, 267–287, doi:10.1016/S0039-9140(01)00594-X.
[16]  Sia, S.; Whitesides, G. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563–3576, doi:10.1002/elps.200305584.
[17]  Utko, P.; Persson, F.; Kristensen, A.; Larsen, N.B. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments. Lab Chip 2011, 11, 303–308, doi:10.1039/c0lc00260g.
[18]  Hansen, T.S.; Selmeczi, D.; Larsen, N.B. Fast prototyping of injection molded polymer microfluidic chips. J. Micromech. Microeng. 2010, 20, doi:10.1088/0960-1317/20/1/015020.
[19]  He, Q.; Sudibya, H.G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 2010, 4, 3201–3208, doi:10.1021/nn100780v.
[20]  Nguyen, P.; Berry, V. Graphene interfaced with biological cells: Opportunities and challenges. J. Phys. Chem. Lett. 2012, 3, 1024–1029, doi:10.1021/jz300033g.
[21]  Rozlosnik, N. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Anal. Bioanal. Chem. 2009, 395, 637–645, doi:10.1007/s00216-009-2981-8.
[22]  Balamurugan, A.; Chen, S.M. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid. Anal. Chim. Acta 2007, 596, 92–98, doi:10.1016/j.aca.2007.05.064.
[23]  Vasantha, V.S.; Chen, S.M. Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J. Electroanal. Chem. 2006, 592, 77–87, doi:10.1016/j.jelechem.2006.04.026.
[24]  Larsen, S.T.; Vreeland, R.F.; Heien, M.L.; Taboryski, R. Characterization of poly(3,4-ethylenedioxythiophene):tosylate conductive polymer microelectrodes for transmitter detection. Analyst 2012, 137, 1831–1836, doi:10.1039/c2an16288a.
[25]  Kiilerich-Pedersen, K.; Poulsen, C.R.; Jain, T.; Rozlosnik, N. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells. Biosens. Bioelectron. 2011, 28, 386–392, doi:10.1016/j.bios.2011.07.053.
[26]  Thein, M.; Asphahani, F.; Cheng, A.; Buckmaster, R.; Zhang, M.; Xu, J. Response characteristics of single-cell impedance sensors employed with surface-modified microelectrodes. Biosens. Bioelectron. 2010, 25, 1963–1969, doi:10.1016/j.bios.2010.01.023.
[27]  Wu, Y.L.; Hsu, P.Y.; Hsu, C.P.; Wang, C.C.; Lee, L.W.; Lin, J.J. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window. Biomed. Microdevices 2011, 13, 939–947, doi:10.1007/s10544-011-9563-1.
[28]  Wu, Y.L.; Hsu, P.Y.; Hsu, C.P.; Lin, J.J. Detecting the effect of targeted anti-cancer medicines on single cancer cells using a poly-silicon wire ion sensor integrated with a confined sensitive window. Biomed. Microdevices 2012, 14, 839–848, doi:10.1007/s10544-012-9664-5.
[29]  Velve-Casquillas, G.; Berre, M.L.; Piel, M.; Tran, P.T. Microfluidic tools for cell biological research. Nano Today 2010, 5, 28–47, doi:10.1016/j.nantod.2009.12.001.
[30]  Barkefors, I.; Le Jan, S.; Jakobsson, L.; Hejll, E.; Carlson, G.; Johansson, H.; Jarvius, J.; Park, J.W.; Li Jeon, N.; Kreuger, J. Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2. J. Biol. Chem. 2008, 283, 13905–13912.
[31]  Tang, Z.; Akiyama, Y.; Itoga, K.; Kobayashi, J.; Yamato, M.; Okano, T. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device. Biomaterials 2012, 33, 7405–7411.
[32]  Buchinger, S.; Grill, P.; Morosow, V.; Ben-Yoav, H.; Shacham-Diamand, Y.; Biran, A.; Pedahzur, R.; Belkin, S.; Reifferscheid, G. Evaluation of chrono-amperometric signal detection for the analysis of genotoxicity by a whole cell biosensor. Anal. Chim. Acta 2010, 659, 122–128, doi:10.1016/j.aca.2009.11.027.
[33]  Chen, J.; Zhang, J.; Yang, H.; Fu, F.; Chen, G. A strategy for development of electrochemical DNA biosensor based on site-specific DNA cleavage of restriction endonuclease. Biosens. Bioelectron. 2010, 26, 144–148, doi:10.1016/j.bios.2010.05.033.
[34]  Primiceri, E.; Chiriaco, M.S.; Ionescu, R.E.; D’Amone, E.; Cingolani, R.; Rinaldi, R.; Maruccio, G. Development of EIS cell chips and their application for cell analysis. Microelectron. Eng. 2009, 86, 1477–1480.
[35]  Diouani, M.F.; Helali, S.; Hafaid, I.; Hassen, W.M.; Snoussi, M.A.; Ghram, A.; Jaffrezic-Renault, N.; Abdelghani, A. Miniaturized biosensor for avian influenza virus detection. Mater. Sci. Eng. C 2008, 28, 580–583.
[36]  Hnaien, M.; Diouani, M.F.; Helali, S.; Hafaid, I.; Hassen, W.M.; Renault, N.J.; Ghram, A.; Abdelghani, A. Immobilization of specific antibody on SAM functionalized gold electrode for rabies virus detection by electrochemical impedance spectroscopy. Biochem. Eng. J. 2008, 39, 443–449, doi:10.1016/j.bej.2007.09.018.
[37]  Daniels, J.S.; Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 2007, 19, 1239–1257, doi:10.1002/elan.200603855.
[38]  Mathebula, N.S.; Pillay, J.; Toschi, G.; Verschoor, J.A.; Ozoemena, K.I. Recognition of anti-mycolic acid antibody at self-assembled mycolic acid antigens on a gold electrode: A potential impedimetric immunosensing platform for active tuberculosis. Chem. Commun. 2009, doi:10.1039/B905192A.
[39]  Arias, L.R.; Perry, C.A.; Yang, L. Real-time electrical impedance detection of cellular activities of oral cancer cells. Biosens. Bioelectron. 2010, 25, 2225–2231, doi:10.1016/j.bios.2010.02.029.
[40]  Ona, T.; Shibata, J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal. Bioanal. Chem. 2010, 398, 2505–2533, doi:10.1007/s00216-010-4223-5.
[41]  Cheung, K.; Gawad, S.; Renaud, P. Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A 2005, 65A, 124–132, doi:10.1002/cyto.a.20141.
[42]  Giaever, I.; Keese, C.R. Use of electric-fields to monitor the dynamic aspect of cell behavior in tissue-culture. IEEE Trans. Biomed. Eng. 1986, 33, 242–247, doi:10.1109/TBME.1986.325896.
[43]  Keese, C.; Giaever, I. A biosensor that monitors cell morphology with electrical fields. IEEE Eng. Med. Biol. Mag. 1994, 13, 402–408, doi:10.1109/51.294012.
[44]  Offenhausser, A.; Knoll, W. Cell-transistor hybrid systems and their potential applications. Trends Biotech. 2001, 19, 62–66, doi:10.1016/S0167-7799(00)01544-4.
[45]  Poghossian, A.; Ingebrandt, S.; Offenhusser, A.; Schning, M. Field-effect devices for detecting cellular signals. Semin. Cell Dev. Biol. 2009, 20, 41–48.
[46]  Schoening, M.J.; Poghossian, A. Bio FEDs (Field-Effect devices): State-of-the-art and new directions. Electroanalysis 2006, 18, 1893–1900, doi:10.1002/elan.200603609.
[47]  McCoy, M.H.; Wang, E. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. J. Virol. Meth. 2005, 130, 157–161, doi:10.1016/j.jviromet.2005.06.023.
[48]  Campbell, C.E.; Laane, M.M.; Haugarvoll, E.; Giaever, I. Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Biosens. Bioelectron. 2007, 23, 536–542, doi:10.1016/j.bios.2007.06.015.
[49]  Arndt, S.; Seebach, J.; Psathaki, K.; Galla, H.J.; Wegener, J. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 2004, 19, 583–594, doi:10.1016/S0956-5663(03)00269-0.
[50]  Solly, K.; Wang, X.; Xu, X.; Strulovici, B.; Zheng, W. Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. ASSAY Drug Dev. Technol. 2004, 2, 363–372, doi:10.1089/adt.2004.2.363.
[51]  Pancrazio, J.; Bey, P.; Cuttino, D.; Kusel, J.; Borkholder, D.; Shaffer, K.; Kovacs, G.; Stenger, D. Portable cell-based biosensor system for toxin detection. Sens. Actuator. B Chem. 1998, 53, 179–185, doi:10.1016/S0925-4005(98)00340-2.
[52]  Liu, Q.; Cai, H.; Xu, Y.; Xiao, L.; Yang, M.; Wang, P. Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens. Bioelectron. 2007, 22, 3224–3229, doi:10.1016/j.bios.2007.03.005.
[53]  Gray, S.A.; Kusel, J.K.; Shaffer, K.M.; Shubin, Y.S.; Stenger, D.A.; Pancrazio, J.J. Design and demonstration of an automated cell-based biosensor. Biosens. Bioelectron. 2001, 16, 535–542, doi:10.1016/S0956-5663(01)00167-1.
[54]  Schmidt, C.; Leach, J. Neural tissue engineering: Strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 2003, 5, 293–347, doi:10.1146/annurev.bioeng.5.011303.120731.
[55]  Lee, J.Y.; Bashur, C.A.; Milroy, C.A.; Forciniti, L.; Goldstein, A.S.; Schmidt, C.E. Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans. Nanobiosci. 2012, 11, 15–21, doi:10.1109/TNB.2011.2159621.
[56]  Larsen, S.; Matteucci, M.; Taboryski, R. Conductive Polymer Microelectrodes for On-Chip Measurement of Transmitter Release from Living Cells. In Proceedings of Nanotech Conference and Expo 2012, Santa Clara, CA, USA, 18–21 June 2012; 2, pp. 302–305.
[57]  Migita, S.; Wada, K.I.; Taniguchi, A. Reproducible fashion of the HSP70B’ promoter-induced cytotoxic response on a live cell-based biosensor by cell cycle synchronization. Biotechnol. Bioeng. 2010, 107, 561–565, doi:10.1002/bit.22840.
[58]  Nie, F.Q.; Yamada, M.; Kobayashi, J.; Yamato, M.; Kikuchi, A.; Okano, T. On-chip cell migration assay using microfluidic channels. Biomaterials 2007, 28, 4017–4022, doi:10.1016/j.biomaterials.2007.05.037.
[59]  Liu, Y.; Sai, J.; Richmond, A.; Wikswo, J.P. Microfluidic switching system for analyzing chemotaxis responses of wortmannin-inhibited HL-60 cells. Biomed. Microdevices 2008, 10, 499–507, doi:10.1007/s10544-007-9158-z.
[60]  Pihl, J.; Karlsson, M.; Chiu, D. Microfluidic technologies in drug discovery. Drug Discov. Today 2005, 10, 1377–1383, doi:10.1016/S1359-6446(05)03571-3.
[61]  Lin, F.; Butcher, E.C. T cell chemotaxis in a simple microfluidic device. Lab Chip 2006, 6, 1462–1469, doi:10.1039/b607071j.
[62]  Georgescu, W.; Jourquin, J.; Estrada, L.; Anderson, A.R.A.; Quaranta, V.; Wikswo, J.P. Model-controlled hydrodynamic focusing to generate multiple overlapping gradients of surface-immobilized proteins in microfluidic devices. Lab Chip 2008, 8, 238–244, doi:10.1039/b716203k.
[63]  Keenan, T.M.; Folch, A. Biomolecular gradients in cell culture systems. Lab Chip 2008, 8, 34–57, doi:10.1039/b711887b.
[64]  Kwasny, D.; Kiilerich-Pedersen, K.; Moresco, J.; Dimaki, M.; Rozlosnik, N.; Svendsen, W.E. Microfluidic device to study cell transmigration under physiological shear stress conditions. Biomed. Microdevices 2011, 13, 899–907, doi:10.1007/s10544-011-9559-x.
[65]  Yun, Y.H.; Eteshola, E.; Bhattacharya, A.; Dong, Z.; Shim, J.S.; Conforti, L.; Kim, D.; Schulz, M.J.; Ahn, C.H.; Watts, N. Tiny medicine: Nanomaterial-based biosensors. Sensors 2009, 9, 9275–9299, doi:10.3390/s91109275.
[66]  Arya, S.K.; Lee, K.C.; Bin Dah’alan, D.; Daniel; Rahman, A.R.A. Breast tumor cell detection at single cell resolution using an electrochemical impedance technique. Lab Chip 2012, 12, 2362–2368.
[67]  Chen, Y.; Wong, C.C.; Pui, T.S.; Nadipalli, R.; Weerasekera, R.; Chandran, J.; Yu, H.; Rahman, A.R. CMOS high density electrical impedance biosensor array for tumor cell detection. Sens. Actuator. B Chem. 2012, 173, 903–907.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133