全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2012 

Recognizing Vertical and Lateral Variability in Terrestrial Landscapes: A Case Study from the Paleosols of the Late Pennsylvanian Casselman Formation (Conemaugh Group) Southeast Ohio, USA

DOI: 10.3390/geosciences2040178

Keywords: continental, soil, ichnofossil, pedogenic, paleopedology, paleoclimate, alluvial

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Upper Pennsylvanian Casselman Formation of southeastern Ohio contains four distinct paleosol types that formed in alluvial systems within the distal Appalachian foreland basin. The properties of these paleosols as well as their small-scale lateral and vertical variations were studied to interpret the paleoenvironmental and paleoecological conditions within the alluvial settings in which they formed. The ichnofossils and pedogenic features preserved within the paleosols of the Casselman Formation record the local climactic, hydrologic, biotic, and topographic changes that occurred in the region during the Late Pennsylvanian. The four paleosols types of the Casselman Formation are interpreted as Alfisols (Type A, Type D), Vertisols (Type B), and Inceptisols (Type D). The four paleosol types indicate different degrees of changes in local moisture regimes including water table fluctuations due to seasonal precipitation and flooding events. The assemblages of ichnofossils within the paleosol types were produced by both soil arthropods and a diverse array of plants that formed part of the different soil ecosystems present within the alluvial environment. Although regional-scale studies are important for understanding the Late Pennsylvanian world, small-scale studies are also necessary to fully understand the local pedogenic, paleoenvironmental, and paleoecologic consequences of global scale changes in paleoclimate and paleogeography.

References

[1]  Frey, R.W. The Lebensspuren of some common marine invertebrates near Beaufort, North Carolina. II. Anemone burrows. J. Paleontol. 1970, 44, 308–311.
[2]  Rhoads, D.C. The paleoecological and environmental significance of trace fossils. In The Study of Trace Fossils; Frey, R.W., Ed.; Springer-Verlag: New York, NY, USA, 1975.
[3]  Seilacher, A.; Seilacher, E. Bivalvian trace fossils: A lesson from actuopaleontology. Cour. Forschungsinst. Senckenb. 1994, 169, 5–15.
[4]  Bromley, R.G. Trace Fossils: Biology, Taphonomy and Applications, 2nd ed.; Chapman & Hall: London, UK, 1996.
[5]  Uchman, A.; Pervesler, P. Surface lebensspuren produced by amphipods and isopods (crustaceans) from the Isonzo delta tidal flat, Italy. Palaios 2006, 21, 384–390, doi:10.2110/palo.2005.P05-63e.
[6]  Gingras, M.; Bann, K.; MacEachern, J.; Pemberton, S. A conceptual framework for the application of trace fossils. In Applied Ichnolgy; MacEachern, J.A., Bann, K.L., Gingras, M.K., Pemberton, S.G., Eds.; SEPM Short Course Notes 52; Society for Sedimentary Geology: Tulsa, OK, USA, 2007; pp. 1–25.
[7]  Joeckel, R. Paleosols below the Ames Marine Unit (Upper Pennsylvanian, Conemaugh Group) in the Appalachian Basin, USA; Variability on an ancient depositional landscape. J. Sediment. Res. 1995, 65, 393–407.
[8]  Kraus, M.J. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth Sci. Rev. 1999, 47, 41–70, doi:10.1016/S0012-8252(99)00026-4.
[9]  Retallack, G.J. Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 207, 203–237, doi:10.1016/j.palaeo.2003.09.027.
[10]  Driese, S.G.; Ober, E.G. Paleopedologic and paleohydrologic records of precipitation seasonality from Early Pennsylvanian “underclay” paleosols, USA. J. Sediment. Res. 2005, 75, 997–1010, doi:10.2110/jsr.2005.075.
[11]  Kraus, M.J.; Hasiotis, S.T. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, USA. J. Sediment. Res. 2006, 76, 633–646, doi:10.2110/jsr.2006.052.
[12]  Hembree, D.I.; Hasiotis, S.T. Paleosols and ichnofossils of the White River Formation of Colorado: Insight into soil ecosystems of the North American Midcontinent during the Eocene-Oligocene transition. Palaios 2007, 22, 123–142, doi:10.2110/palo.2005.p05-119r.
[13]  Hembree, D.I.; Nadon, G.C. A paleopedologic and ichnologic perspective of the terrestrial Pennsylvanian landscape in the distal Appalachian Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 312, 138–166, doi:10.1016/j.palaeo.2011.10.004.
[14]  Kraus, M.J.; Bown, T.M. Paleosols and time resolution in alluvial stratigraphy. In Paleosols: Their Recognition and Interpretation; Wright, V.P., Ed.; Princeton University Press: Princeton, NJ, USA, 1986; pp. 180–207.
[15]  Retallack, G.J.; Mindszenty, A. Well preserved late Precambrian paleosols from northwest Scotland. J. Sediment. Res. 1994, 64, 264–281.
[16]  Smith, J.J.; Hasiotis, S.T.; Kraus, M.J.; Woody, D.T. Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene–Eocene Thermal Maximum. Palaios 2008, 23, 683–699, doi:10.2110/palo.2007.p07-080r.
[17]  Tabor, N.J.; Monta?ez, I.P.; Scotese, C.R.; Poulsen, C.J.; Mack, G.H. Paleosol archives of environmental and climatic history in paleotropical western Pangea during the latest Pennsylvanian through Early Permian. In Resolving the Late Paleozoic Ice Age in Time and Space; Frank, T.D., Isbell, J.L., Eds.; Geological Society of America: Boulder, CO, USA, 2008; pp. 291–304.
[18]  Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev. 2009, 95, 1–52, doi:10.1016/j.earscirev.2009.03.004.
[19]  Aslan, A.; Autin, W.J. Holocene flood-plain soil formation in the southern lower Mississippi Valley: Implications for interpreting alluvial paleosols. Geol. Soc. Am. Bull. 1998, 110, 433–449.
[20]  Retallack, G.J. Soils of the Past: An Introduction to Paleopedology, 2nd ed.; Blackwell Science Ltd.: Oxford, UK, 2001.
[21]  Buol, S.W. Soil Genesis and Classification, 5th ed.; Blackwell Publishing: Ames, IA, USA, 2003.
[22]  Schaetzl, R.J.; Anderson, S. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2009.
[23]  Hembree, D.I.; Hasiotis, S.T. Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 270, 349–365, doi:10.1016/j.palaeo.2008.07.019.
[24]  Retallack, G.J.; Amundson, R.; Harden, J.; Singer, M. The environmental factor approach to the interpretation of paleosols. In Factors of Soil Formation: A Fiftieth Anniversary Retrospective, Special Publication of the Soil Science Society of America 33; Amundson, R., Harden, J., Singer, M., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 31–64.
[25]  Retallack, G.J. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 2005, 33, 333–336, doi:10.1130/G21263.1.
[26]  Tabor, N.J.; Monta?ez, I.P.; Kelso, K.A.; Currie, B.; Shipman, T.; Colombi, C.A. Late Triassic soil catena: Landscape and climate controls on paleosol morphology and chemistry across the Carnian-age Ischigualasto-Villa Union Basin, northwestern Argentina. Spec. Pap. Geol. Soc. Am. 2006, 416, 17–41.
[27]  Hasiotis, S.T. Complex ichnofossils of solitary and social soil organisms: Understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 192, 259–320, doi:10.1016/S0031-0182(02)00689-2.
[28]  Hasiotis, S.T. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment. Geol. 2004, 167, 177–268, doi:10.1016/j.sedgeo.2004.01.006.
[29]  Kraus, M.J.; Riggins, S. Transient drying during the Paleocene-Eocene thermal maximum (PETM): Analysis of paleosols in the Bighorn Basin, Wyoming. Palaeogeog. Palaeoclimatol. Palaeoecol. 2007, 245, 444–461, doi:10.1016/j.palaeo.2006.09.011.
[30]  Therrien, F.; Zelenitsky, D.K.; Weishampel, D.B. Palaeoenvironmental reconstruction of the Late Cretaceous Sanpetru Formation (Hateg Basin, Romania) using paleosols and implications for the “disappearance” of dinosaurs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 272, 37–52, doi:10.1016/j.palaeo.2008.10.023.
[31]  Hembree, D.I.; Martin, L.D.; Hasiotis, S.T. Amphibian burrows and ephemeral ponds of the Lower Permian Speiser Shale, Kansas: Evidence for seasonality in the midcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 127–152, doi:10.1016/S0031-0182(03)00664-3.
[32]  Smith, J.J.; Hasiotis, S.T. Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: Neoichnology and paleoecological significance of extant soil-dwelling insects. Palaios 2008, 23, 503–513, doi:10.2110/palo.2007.p07-063r.
[33]  Melchor, R.N.; Genise, J.F.; Farina, J.L.; Sánchez, M.V.; Sarzetti, L.; Visconti, G. Large striated burrows from fluvial deposits of the Neogene Vinchina Formation, La Rioja, Argentina: A crab origin suggested by neoichnology and sedimentology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 400–418, doi:10.1016/j.palaeo.2010.03.010.
[34]  Sturgeon, M.T. The Geology and Mineral Resources of Athens County, Ohio; State of Ohio Division of Geological Survey: Columbus, OH, USA, 1958.
[35]  McDowell, R. An interpretation of the Grafton sandstone and its implications for Pennsylvanian paleohydraulics, climate, provenance, and tectonics. Compass Sigma Gamma Epsil. 1986, 63, 48–57.
[36]  Milici, R.C.; Swezey, C.S. Assessment of Appalachian Basin Oil and Gas Resources: Devonian Shale—Middle and Upper Paleozoic Total Petroleum System; U.S. Geological Survey Open-File Report 2006-1237; U.S. Geological Survey: Reston, VA, USA, 2006.
[37]  Chesnut, D.R., Jr. Timing of the Alleghenian tectonics determined by Central Appalachian foreland basin analysis. Southeast. Geol. 1991, 31, 203–221.
[38]  Edmunds, W.E.; Skema, V.W.; Flint, N.K. Pennsylvanian. In The Geology of Pennsylvania—SpecialPublication 1; Pennsylvania Geological Survey: Middletown; Pittsburgh Geological Society: Pittsburgh, PA, USA, 1999.
[39]  Belt, E.S.; Heckel, P.H.; Lentz, L.J.; Bragonier, W.A.; Lyons, T.W. Record of glacial-eustatic sea-level fluctuations in complex middle to late Pennsylvanian facies in the Northern Appalachian Basin and relation to similar events in the Midcontinent basin. Sediment. Geol. 2011, 238, 79–100, doi:10.1016/j.sedgeo.2011.04.004.
[40]  Donaldson, A.; Renton, J.; Presley, M. Pennsylvanian deposystems and paleoclimates of the Appalachians. Int. J. Coal Geol. 1985, 5, 167–193, doi:10.1016/0166-5162(85)90013-8.
[41]  Opdyke, N.; DiVenere, V. Paleomagnetism and Carboniferous climate. In Predictive Stratigraphic Analysis: Concept and Application; Cecil, C.B., Edgar, N.T., Eds.; U.S. Geological Survey Bulletin 2110; U.S. Government Printing Office: Washington, DC, USA, 1994; pp. 8–9.
[42]  Brezinski, D. Developmental model for an Appalachian Pennsylvanian marine incursion. Northeast. Geol. 1983, 5, 92–95.
[43]  Scotese, C.R. Carboniferous paleocontinental reconstructions. In Predictive Stratigraphic Analysis: Concept and Application; Cecil, C.B., Edgar, N.T., Eds.; U.S. Geological Survey Bulletin 2110; U.S. Government Printing Office: Washington, DC, USA, 1994; pp. 3–5.
[44]  Heckel, P.H. Glacial-eustatic base-level-climatic model for late Middle to Late Pennsylvanian coal-bed formation in the Appalachian Basin. J. Sediment. Res. 1995, 65, 348–356.
[45]  Nadon, G.; Kelly, R. The constraints of glacial eustasy and low accommodation on sequence stratigraphic interpretations of Pennsylvanian strata, Conemaugh Group, Appalachian basin, USA. In Sequence Stratigraphy, Paleoclimate, and Tectonics of Coal-Bearing Strata; Pashin, J.C., Gastaldo, R.A., Eds.; AAPG: Tulsa, OK, USA, 2004; pp. 29–44.
[46]  Rygel, M.C.; Fielding, C.R.; Frank, T.D.; Birgenheier, L.P. The magnitude of late Paleozoic glacioeustatic fluctuations: A synthesis. J. Sediment. Res. 2008, 78, 500–511, doi:10.2110/jsr.2008.058.
[47]  Heckel, P.H. Pennsylvanian cyclothems in Midcontinent North America as far-?eld effects of waxing and waning of Gondwana ice sheets. In Resolving the Late Paleozoic Ice Age in Time and Space; Fielding, C.R., Frank, T.D., Isbell, J.L., Eds.; Geological Society of America: Boulder, CO, USA, 2008; pp. 275–290.
[48]  Merrill, G. Lithostratigraphy and lithogenesis of Conemaugh (Carboniferous) depositional systems near Huntington, West Virginia. Southeast. Geol. 1986, 28, 155–171.
[49]  Lebold, J.G.; Kammer, T.W. Gradient analysis of faunal distributions associated with rapid transgression and low accommodation space in a Late Pennsylvanian marine embayment: Biofacies of the Ames Member (Glenshaw Formation, Conemaugh Group) in the northern Appalachian Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 231, 291–314, doi:10.1016/j.palaeo.2005.08.005.
[50]  Cormany, C.R. The Fluvial Architecture of the Upper Casselman Formation, Conemaugh Group (Pennsylvanian), Athens County, Ohio. Master’s Thesis, Ohio University, Athens, OH, USA, 2001.
[51]  Tabor, N.J.; Montanez, I.P. Morphology and distribution of fossil soils in the Permo-Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: Implications for western equatorial Pangean palaeoclimate during icehouse-greenhouse transition. Sedimentology 2004, 51, 851–884, doi:10.1111/j.1365-3091.2004.00655.x.
[52]  Cecil, C.B.; Dulong, F.T.; West, R.R.; Stamm, R.; Wardlaw, B.; Edgar, N.T. Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America. SEPM Spec. Publ. 2003, 77, 151–182.
[53]  Falcon-Lang, H.J.; Heckel, P.H.; Dimichele, W.A.; Bascomb, M.; Blake, J.; Easterday, C.R.; Eble, C.F.; Elrick, S.; Gastaldo, R.A.; Greb, S.F.; Martino, R.L. No major stratigraphic gap exists near the Middle–Upper Pennsylvanian (Desmoinesian–Missourian) boundary in North America. Palaios 2011, 26, 125–139, doi:10.2110/palo.2010.p10-049r.
[54]  Brewer, R. Fabric and Mineral Analysis of Soils, 2nd ed.; Krieger: New York, NY, USA, 1976.
[55]  Fitzpatrick, E.A. Soil Microscopy and Micromorphology; John Wiley & Sons: New York, NY, USA, 1993.
[56]  Mack, G.H.; James, W.C.; Monger, H.C. Classification of paleosols. Geol. Soc. Am. Bull. 1993, 105, 129–136.
[57]  NRCS Soils. Keys to Soil Taxonomy, 11th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010.
[58]  Bertling, M.; Braddy, S.J.; Bromley, R.G.; Demathieu, G.R.; Genise, J.; Mikul, R.; Nielsen, J. K.; Nielsen, K. S.S.; Rindsberg, A.K.; Schlirf, M. Names for trace fossils: A uniform approach. Lethaia 2006, 39, 265–286, doi:10.1080/00241160600787890.
[59]  D’Alessandro, A.; Bromley, R.G. Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology 1987, 30, 743–763.
[60]  Hasiotis, S.T.; van Wagoner, J.C. Continental Trace Fossils; SEPM Short Course Notes 51; SEPM Society for Sedimentary: Tulsa, OK, USA, 2002.
[61]  Gingras, M.K.; Pemberton, S.G.; Mendoza, C.; Henk, F.H. Modeling fluid flow in trace fossils: Assessing the anisotropic permeability of Glossifungites surfaces. Petrol. Geosci. 1999, 5, 349–357, doi:10.1144/petgeo.5.4.349.
[62]  Hasiotis, S.; Kraus, M.; Demko, T. Climate controls on continental trace fossils. In Trace Fossils: Concepts, Problems, Prospects; Miller, W., III, Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 172–195.
[63]  Mason, J.A; Jacobs, P.M. Nature of Quaternary paleosols. In Encyclopedia of Quaternary Science; Elias, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2007.
[64]  LePage, B.; Pfefferkorn, H. Did ground cover change over geologic time? Paleontol. Soc. Pap. 2000, 6, 171–182.
[65]  DiMichele, W.A.; Pfefferkorn, H.W.; Gastaldo, R.A. Response of Late Carboniferous and Early Permian plant communities to climate change. Annu. Rev. Earth Planet. Sci. 2001, 29, 461–487, doi:10.1146/annurev.earth.29.1.461.
[66]  Stiles, C.A.; Mora, C.I.; Driese, S.G. Pedogenic iron-manganese nodules in Vertisols: A new proxy for paleoprecipitation? Geology 2001, 29, 943, doi:10.1130/0091-7613(2001)029<0943:PIMNIV>2.0.CO;2.
[67]  Thomas, B.A. Paleozoic Herbaceous Lycopsids and the beginnings of extant Lycopodium Sens Lat. and Selaginella Sens. Lat. Ann. Mo. Bot. Gard. 1992, 79, 623–631, doi:10.2307/2399756.
[68]  Collinson, J. Alluvial sediments. In Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd; Reading, H.G., Ed.; Blackwell Sciences Ltd.: Oxford, UK, 1996; pp. 37–82.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413