全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geosciences  2012 

Examining Local Climate Variability in the Late Pennsylvanian Through Paleosols: An Example from the Lower Conemaugh Group of Southeastern Ohio, USA

DOI: 10.3390/geosciences2040260

Keywords: soils, terrestrial, continental, paleoclimate, paleopedology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Three temporally close stratigraphic sections were excavated in Glenshaw Formation of Athens County, Ohio. The described units are Upper Pennsylvanian (Gzhelian, 305–302 Ma) and located in the distal portion of the Appalachian foreland basin. Mudstone units interpreted as paleosols were identified across all three sections. Detailed field and micromorphological studies lead to the recognition of two separate paleosols within the profile. The profile consists of a composite paleosol composed of two cumulative paleosols. The lower paleosol is interpreted as a calcic Vertisol which formed in a seasonally dry environment whereas the upper paleosol is interpreted as a gleyed Inceptisol which formed in a seasonally wet environment. The change in paleosol types is the result of increased precipitation which led to saturation of the soil and surface ponding. Pedogenic carbonate nodules are a common feature throughout the entire profile as are stress cutans. A coalesced carbonate horizon (Bk) was observed approximate 120 cm from the top of the profile in all three sections. This carbonate horizon formed in the Vertisol and later served as a barrier which limited the downward movement of surface water. This limited the gleization of the bottom portion of the overprinted Vertisol resulting in a diffuse boundary with the overlying Inceptisol and producing a composite paleosol.

References

[1]  Cecil, C.B.; Stanton, R.W.; Neuzil, S.G.; Dulong, F.T.; Ruppert, L.F.; Pierce, B.S. Paleoclimate controls on Late Paleozoic sedimentation and peat formation in the central Appalachian basin. Int. J. Coal Geol. 1985, 5, 195–230, doi:10.1016/0166-5162(85)90014-X.
[2]  Joeckel, R.M. Paleosols below the Ames marine unit (Upper Pennsylvanian, Conemaugh Group) in the Appalachian basin, U.S.A.: Variability on an ancient depositional landscape. J. Sediment. Res. 1995, 65, 393–407.
[3]  DiMichele, W.A.; Pfefferkorn, H.W.; Gastaldo, R.A. Response of Late Carboniferous and Early Permian plant communities to climate change. Annu. Rev. Earth Planet. Sci. 2001, 29, 461–487, doi:10.1146/annurev.earth.29.1.461.
[4]  DiMichele, W.A.; Cecil, C.B.; Monta?ez, I.P.; Falcon-Lang, H.J. Cyclic changes in Pennsylvanian paleoclimate and effects on floristic dynamics in tropical Pangaea. Int. J. Coal Geol. 2010, 83, 329–344, doi:10.1016/j.coal.2010.01.007.
[5]  Hembree, D.I.; Nadon, G.C. A paleopedologic and ichnologic perspective of the terrestrial Pennsylvanian landscape in the distal Appalachian Basin, U.S.A. Palaeogeog. Palaeoclimatol. Palaeoecol. 2011, 312, 138–166, doi:10.1016/j.palaeo.2011.10.004.
[6]  Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstructions using paleosols. Earth-Sci. Rev. 2009, 95, 1–52.
[7]  Hasiotis, S.T. Continental ichnology: Fundamental processes and controls on trace fossil distribution. In Trace Fossils: Concepts, Problems, Prospects; Miller, W., III, Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 268–284.
[8]  Kraus, M.J.; Hasiotis, S.T. Significance of different modes of rhizoliths preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. J. Sediment. Res. 2006, 76, 633–646, doi:10.2110/jsr.2006.052.
[9]  Retallack, G.J. Soils of the Past, 2nd ed.; Blackwell Science: Oxford, UK, 2001.
[10]  Schaetzl, R.; Anderson, S. Soils: Genesis and Geomorphology; Cambridge University Press: Cambridge, UK, 2009.
[11]  Kraus, M.J. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth-Sci. Rev. 1999, 47, 41–70.
[12]  Greb, S.F.; Pashin, J.C.; Martino, R.L.; Eble, C.F.; Frank, T.D. Appalachian sedimentary cycles during the Pennsylvanian: Changing influences of sea level, climate, and tectonics. Geol. Soc. Am. Spec. Pap. 2008, 441, 235–248.
[13]  Scotese, C.R. Carboniferous paleocontinental reconstructions. In Predictive Stratigraphic Analysis—Concept and Application; Cecil, C.B., Edgar, N.T., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1994; pp. 3–6.
[14]  Heckel, P.H. Glacial-eustatic base-level—Climatic model for Late Middle to Late Pennsylvanian coal-bed formation in the Appalachian Basin. J. Sediment. Res. 1995, 65B, 348–356.
[15]  Lebold, J.G.; Kammer, T.W. Gradient analysis of faunal distributions associated with rapid transgression and low accommodation space in a Late Pennsylvanian marine embayment: Biofacies of the Ames Member (Glenshaw Formation, Conemaugh Group) in the northern Appalachian Basin, USA. Palaeogeog. Palaeoclimatol. Palaeoecol. 2006, 231, 291–314, doi:10.1016/j.palaeo.2005.08.005.
[16]  Busch, R.M.; Rollins, H.B. Correlation of Carboniferous strata using a hierarchy of transgressive-regressive units. Geology 1984, 12, 471–474, doi:10.1130/0091-7613(1984)12<471:COCSUA>2.0.CO;2.
[17]  Ross, C.A.; Ross, J.R. Late Paleozoic sea levels and depositional sequences. In Timing and Depositional History of Eustatic Sequences: Constraints on Seismic Stratigraphy; Ross, C.A., Haman, D., Eds.; Cushman Foundation for Foraminiferal Research: Washington, DC, USA, 1987; pp. 137–149. Special Publication No. 24.
[18]  Heckel, P.H. Evaluation of evidence for glacio-eustatic control over marine Pennsylvanian cyclothems in North America and consideration of possible tectonic effects. SEPM Concepts Sedimentol. Paleontolog. 1994, 4, 65–87.
[19]  Cecil, C.B.; Dulong, F.T.; West, R.R.; Stamm, R.; Wardlaw, B.; Edgar, N.T. Climate controls on the stratigraphy of a Middle Pennsylvanian cyclothem in North America. SEPM Spec. Publ. 2003, 77, 151–182.
[20]  Nadon, G.C.; Kelly, R.R. The constraints of glacial eustasy and low accommodation on sequence-stratigraphic interpretations of Pennsylvanian strata, Conemaugh Group, Appalachian basin, U.S.A. Am. Assoc. Pet. Geol. Stud. Geol. 2004, 51, 29–44.
[21]  Donaldson, A.C.; Renton, J.J.; Presley, M.W. Pennsylvanian deposystems and paleoclimates of the Appalachians. Int. J. Coal Geol. 1985, 5, 167–193, doi:10.1016/0166-5162(85)90013-8.
[22]  Sturgeon, M.T. The Geology and Mineral Resources of Athens County, Ohio; Ohio Division of Geological Survey: Columbus, OH, USA, 1958.
[23]  Martino, R.L. Sequence stratigraphy of the Glenshaw Formation (Middle–Late Pennsylvanian) in the central Appalachian basin. Am. Assoc. Pet. Geol. Stud. Geol. 2004, 51, 1–28.
[24]  Condit, D.D. The Conemaugh Formation in Southern Ohio. Ohio Nat. 1909, 9, 482–488.
[25]  Munsell Color. Munsell Rock Color Charts; Munsell Color: Baltimore, MD, USA, 2001.
[26]  Mack, G.H.; James, W.C.; Monger, H.C. Classification of paleosols. Geol. Soc. Am. Bull. 1993, 105, 129–136.
[27]  NRCS Soils. In Keys to Soil Taxonomy, 11th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010.
[28]  Brewer, R. Fabric and Mineral Analysis of Soils, 2nd ed.; Krieger: New York, NY, USA, 1976.
[29]  Wilding, L.P.; Tessier, D. Genesis of Vertisols: Shrink-swell phenomena. In Vertisols: Their Distribution, Properties, Classification, and Management; Wilding, L.P., Puentes, R., Eds.; Texas A&M University Printing Center: College Station, TX, USA, 1988; pp. 55–81.
[30]  Coulombe, C.E.; Wilding, L.P.; Dixon, J.B. Overview of Vertisols: Characteristics and impacts on society. Adv. Agron. 1996, 57, 289–375.
[31]  Jayawardane, N.S.; Greacen, E.L. The nature of swelling in soils. Austral. J. Soil Res. 1987, 25, 107–113, doi:10.1071/SR9870107.
[32]  Tabor, N.J.; Monta?ez, I.P.; Scotese, C.R.; Poulsen, C.J.; Mack, G.H. Paleosol archives of environmental and climatic history in paleotropical western Pangea during the latest Pennsylvanian through Early Permian. In Resolving the Late Paleozoic Ice Age in Time and Space; Frank, T.D., Isbell, J.L., Eds.; Geological Society of America: Boulder, CO, USA, 2008; pp. 291–304.
[33]  Bromley, R.G. Trace Fossils: Biology, Taphonomy and Applications, 2nd ed.; Chapman & Hall: London, UK, 1996.
[34]  Gile, L.H.; Peterson, F.F.; Grossman, R.B. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Sci. 1966, 101, 347–360.
[35]  Salomons, W.; Goudie, A.; Mook, W.G. Isotopic composition of calcrete deposits from Europe, Africa, and India. Earth Surf. Proc. Landf. 1978, 3, 43–57.
[36]  Treadwell-Steitz, C.; McFadden, L.D. Influence of parent material and grain size on carbonate coatings in gravelly soils, Palo Duro Wash, New Mexico. Geoderma 2000, 94, 1–22, doi:10.1016/S0016-7061(99)00075-0.
[37]  Stiles, C.A.; Mora, C.I.; Driese, S.G.; Robinson, A.C. Distinguishing climate and time in the soil record: Mass-balance trends in Vertisols from the Texas coastal prairie. Geology 2003, 31, 331–334, doi:10.1130/0091-7613(2003)031<0331:DCATIT>2.0.CO;2.
[38]  Kraus, M.J. Lower Eocene alluvial paleosols: Pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeog. Palaeoclimatol. Palaeoecol. 1997, 129, 387–406, doi:10.1016/S0031-0182(96)00056-9.
[39]  Birkeland, P.W. Soils and Geomorphology; Oxford University Press: New York, NY, USA, 1999.
[40]  Jenny, H. Factors of Soil Formation; McGraw-Hill: New York, NY, USA, 1941.
[41]  Mack, G.H.; James, W.C. Paleoclimate and the global distribution of paleosols. J. Geol. 1994, 102, 360–366.
[42]  Royer, D.L. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator. Geology 1999, 27, 1123–1126, doi:10.1130/0091-7613(1999)027<1123:DTPCHA>2.3.CO;2.
[43]  Driese, S.G.; Ober, E.G. Paleopedologic and paleohydrologic records of precipitation seasonality from Early Pennsylvanian “underclay” paleosols, USA. J. Sediment. Res. 2005, 75, 997–1010, doi:10.2110/jsr.2005.075.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133