全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Information  2012 

Chemical Affinity as Material Agency for Naturalizing Contextual Meaning

DOI: 10.3390/info3010021

Keywords: chemical affinity, computation, covalent bond, cross-hierarchy exchange, internalism, measurement, meta-stable products, narrative forms, non-covalent bond, semiosis, time

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemical affinity involves the integration of two different types of interaction. One is the interaction operating between a pair of reactants while forming a chemical bond, and the other is the prior interaction between those reactants when they identify a reaction partner. The context of the environments under which chemical reactions proceed is identified by the interaction of the participating chemical reactants themselves unless the material process of internal measurement is substituted by theoretical artifacts in the form of imposed boundary conditions, as in the case, for example, of thermal equilibrium. The identification-interaction specific to each local participant serves as a preparation for the making of chemical bonds. The identification-interaction is intrinsically selective in precipitating those chemical bonds that are synthesized most rapidly among possible reactions. Once meta-stable products appear that mediate chemical syntheses and their partial decompositions without totally decomposing, those products would become selective because of their ongoing participation in the identification-interaction. One important natural example must have been the origin and evolution of life on Earth.

References

[1]  Matsuno, K. Internal Measurement. In Protobiology: Physical Basis of Biology; CRC Press: Boca Raton, FL, USA, 1989.
[2]  Matsuno, K. Internalist stance and the physics of information. BioSystems 1996, 38, 111–118, doi:10.1016/0303-2647(95)01580-9.
[3]  Zurek, W.H. Preferred Observables, Predictability, Classicality, and the Environment-Induced Decoherence. In The Physical Origins of Time Asymmetry; Halliwell, J.J., Perez-Mercader, J., Zurek, W.H., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 175–212.
[4]  Matsuno, K.; Nemoto, A. Quantum as a heat engine—the physics of intensities unique to the origins of life. Phys. Life Rev. 2005, 2, 227–250, doi:10.1016/j.plrev.2005.06.002.
[5]  Matsuno, K. Receptive openness to a message and its dative—materialist origin of time. Information 2011, 2, 383–405, doi:10.3390/info2030383.
[6]  Siedow, J.; Day, D. Respiration and Photorespiration. In Biochemistry & Molecular Biology of Plants; Buchanan, B.B., Gruissem, W., Jones, R.L., Eds.; American Society of Plant Physiologists, 2000; Volume Chapter 14, pp. 676–729.
[7]  Matsuno, K. Forming and maintaining a heat engine for quantum biology. BioSystems 2006, 85, 23–29, doi:10.1016/j.biosystems.2006.02.002.
[8]  Salthe, S.N. Evolving Hierarchical Systems: Their Structure and Representation; Columbia University Press: New York, NY, USA, 1985.
[9]  Salthe, S.N. Development and Evolution: Complexity and Change in Biology; MIT Press: Cambridge, MA, USA, 1993.
[10]  Everett, H. Relative state formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454–462, doi:10.1103/RevModPhys.29.454.
[11]  Deacon, T.W. Incomplete Nature: How Mind Emerged from Matter; W. W. Norton: New York NY, USA, 2012.
[12]  Matsuno, K.; Salthe, S.N. The origin and development of time. Int. J. Gen. Syst. 2002, 31, 377–393, doi:10.1080/0308107021000013644.
[13]  Rosenfeld, N.; Young, J.W.; Alon, U.; Swain, P.S.; Elowitz, M.B. Gene regulation at the single-cell level. Science 2005, 307, 1962–1965, doi:10.1126/science.1106914.
[14]  Pedraza, J.M.; van Oudenaarden, A. Noise propagation in gene networks. Science 2005, 307, 1965–1969, doi:10.1126/science.1109090.
[15]  Penrose, R. Shadows of the Mind: A Search for the Missing Science of Consciousness; Oxford University Press: Oxford, UK, 1994.
[16]  Landau, L.J. Penrose’s Philosophical Error. In Concepts for Neural Networks: A Survey; Landau, L.J., Taylor, J.G., Eds.; Springer-Verlag: New York, NY, USA, 1997; pp. 171–224.
[17]  Kampis, G. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Evolution; Pergamon Press: London, UK, 1991.
[18]  Webb, J.C. Mechanism, Mentalism and Metamathematics: An Essay on Finitism; D. Reidel: Dordrecht, The Netherlands, 1980.
[19]  Buchanan, B.B.; Arnon, D.I. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth.Res. 1990, 24, 47–53, doi:10.1007/BF00032643.
[20]  Matsuno, K. Framework of space and time from the proto-semiotic perspective. Biosemiotics 2011, 4, 103–118, doi:10.1007/s12304-010-9110-0.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133