全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Antibodies  2012 

Dual Targeting of Tumor Cells with Bispecific Single-Chain Fv-Immunoliposomes

DOI: 10.3390/antib1020199

Keywords: dual targeting, bispecific immunoliposomes, single-chain Fv fragments, tumor targeting

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antibody fragments, especially single-chain Fv fragments, have been established for the generation of immunoliposomes for targeted drug delivery in cancer therapy and other applications. Bispecific immunoliposomes should be useful for dual targeting addressing inter- and intratumoral heterogeneity of tumor antigen expression. Here, we established a protocol to generate dual-targeted immunoliposomes using genetically engineered scFv molecules recognizing two different tumor-associated antigens, EGFR and CEA (CEACAM5), applying a step-wise insertion of antibody-coupled micelles into preformed PEGylated liposomes. The dual-targeted immunoliposomes retained binding activity for both antigens and combined the selectivity of both antibodies within one liposome. Thus, these dual-targeted immunoliposomes should be suitable to deliver therapeutic payloads to tumor cells expressing EGFR or CEA, or both antigens.

References

[1]  Fenske, D.B.; Cullis, P.R. Liposomal nanomedicines. Expert Opin. Drug. Deliv. 2008, 5, 25–44, doi:10.1517/17425247.5.1.25.
[2]  Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599, doi:10.1016/j.tips.2009.08.004.
[3]  Buse, J.; El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: Current research and advances. Nanomedicine 2010, 5, 1237–1260, doi:10.2217/nnm.10.107.
[4]  Al-Jamal, W.T.; Kostarelos, K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1094–1104, doi:10.1021/ar200105p.
[5]  Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760, doi:10.1038/nnano.2007.387.
[6]  Gabizon, A.; Shmeeda, H.; Grenader, T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. Eur. J. Pharm. Sci. 2012, 45, 388–398, doi:10.1016/j.ejps.2011.09.006.
[7]  Woodle, M.C. Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev. 1995, 16, 249–265, doi:10.1016/0169-409X(95)00028-6.
[8]  Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 2003, 42, 463–478, doi:10.1016/S0163-7827(03)00033-X.
[9]  Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug. Chem. 2010, 21, 797–802, doi:10.1021/bc100070g.
[10]  Jain, R.K.; Styllanopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664, doi:10.1038/nrclinonc.2010.139.
[11]  Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318.
[12]  Bryne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug. Deliv. Rev. 2008, 60, 1615–1626, doi:10.1016/j.addr.2008.08.005.
[13]  Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99, doi:10.1016/j.phrs.2010.03.005.
[14]  Maruyama, K.; Ishida, O.; Takizawa, T.; Moribe, K. Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev. 1999, 40, 89–102, doi:10.1016/S0169-409X(99)00042-3.
[15]  Kontermann, R.E. Immunoliposomes for cancer therapy. Curr. Opin. Mol. Ther. 2006, 8, 39–45.
[16]  Torchilin, V. Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug. Deliv. 2008, 5, 1003–1025, doi:10.1517/17425247.5.9.1003.
[17]  Ishida, T.; Iden, D.L.; Allen, T.M. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett. 1999, 460, 129–133, doi:10.1016/S0014-5793(99)01320-4.
[18]  Nielsen, U.B.; Kirpotin, D.B.; Pickering, E.M.; Hong, K.; Park, J.W.; Shalaby, M.R.; Shao, Y.; Benz, C.C.; Marks, J.D. Therapeutic efficacy of anti-erbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim. Biophys. Acta 1591, 109–118.
[19]  Baum, P.; Müller, D.; Rüger, R.; Kontermann, R.E. Single-chain Fv immunoliposomes for the targeting of fibroblast activation protein-expressing tumor stromal cells. J. Drug Target. 2007, 15, 399–406, doi:10.1080/10611860701453034.
[20]  Messerschmidt, S.K.E.; Kolbe, A.; Müller, D.; Knoll, M.; Pleiss, J.; Kontermann, R.E. Novel single-chain Fv' formats for the generation of immunoliposomes by site-directed coupling. Bioconjug. Chem. 2008, 19, 362–369, doi:10.1021/bc700349k.
[21]  Chhieng, D.C.; Frost, A.R.; Niwas, S.; Weiss, H.; Grizzle, W.E.; Beeken, S. Intratumoral heterogeneity of biomoarker expression in breast carcinomas. Biotech. Histochem. 2004, 79, 25–36, doi:10.1080/10520290410001715237.
[22]  Campbell, L.L.; Polyak, K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 2007, 6, 2332–2338, doi:10.4161/cc.6.19.4914.
[23]  Torres, L.; Ribeiro, F.R.; Pandis, N.; Andersen, J.A.; Heim, S.; Teixeira, M.R. Intratumor genomic heterogenity in breast cancer with clonal divergence between primary carcinomas and lymph node metastasis. Breast Cancer Res. Treat. 2007, 102, 143–155, doi:10.1007/s10549-006-9317-6.
[24]  Nassar, A.; Radhakrishnan, A.; Cabrero, I.A.; Cotsonis, G.A.; Cohen, C. Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 433–441.
[25]  Marusyk, A.; Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta 1805, 105–117.
[26]  Kontermann, R.E. Dual targeting strategies using bispecific antibodies. mAbs 2012, 4, 182–197, doi:10.4161/mabs.4.2.19000.
[27]  Laginha, K.; Mumbengegwi, D.; Allen, T. Liposomes targeted via two different antibodies: Assay, B-cell binding and cytotoxicity. Biochem. Biophys. Acta 1711, 25–32.
[28]  Ferrante, E.A.; Pickard, J.E.; Rychak, J.; Klibanov, A.; Ley, K. Dual targeting improves microbubble contras agent adhesion to VCAM-1 and P-selectin under flow. J. Control. Release 2009, 140, 100–107, doi:10.1016/j.jconrel.2009.08.001.
[29]  Meng, S.; Su, B.; Li, W.; Ding, Y.; Tang, L.; Zhou, W.; Song, Y.; Li, H.; Zhou, C. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes. Nanotechnology 2010, 21, 415103, doi:10.1088/0957-4484/21/41/415103.
[30]  Chen, H.; Yuan, B.; Yang, Z. Dual targeting of glioma U251 cells with nanoparticles prevents tumor angiogenesis and inhibits tumor growth. Curr. Neurovasc. Res. 2012. Epup ahead of print.
[31]  Saul, J.M.; Annapragada, A.V.; Bellamkonda, R.V. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J. Control. Release 2006, 114, 277–287, doi:10.1016/j.jconrel.2006.05.028.
[32]  Rocha-Lima, C.M.; Soares, H.P.; Raez, L.E.; Singal, R. EGFR targeting of solid tumors. Cancer Control 2007, 14, 295–304.
[33]  Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell Mol. Life Sci. 2008, 65, 1566–1584, doi:10.1007/s00018-008-7440-8.
[34]  Hammarstr?m, S. The carcinoembryonic antigen (CEA) family: Structure, suggested fucntions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999, 9, 67–81, doi:10.1006/scbi.1998.0119.
[35]  Rüger, R.; Müller, D.; Fahr, A.; Kontermann, R.E. Generation of immunoliposomes using recombinant single-chain Fv fragments bound to Ni-NTA-liposomes. J. Drug Target. 2005, 13, 399–406, doi:10.1080/10611860500353328.
[36]  Kastantin, M.; Ananthanarayanan, B.; Karmali, P.; Ruoslahti, E.; Tirrell, M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir 2009, 25, 7279–7286.
[37]  Iden, D.L.; Allen, T.M. In vitro and in vivo comparison of immunoliposomes made by conventional coupling techniques with those made by a new post-insertion approach. Biochim. Biophys. Acta 1513, 207–216.
[38]  Allen, T.M.; Sapra, P.; Moase, E. Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell. Mol. Biol. Lett. 2002, 7, 889–894.
[39]  Arleth, L.; Ashok, B.; Onyuksel, H.; Thiyagarajan, P.; Jacob, J.; Hjelm, R.P. Detailed structure of hairy mixed micelles fomred by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir 2005, 21, 3279–3290, doi:10.1021/la047588y.
[40]  Adams, G.P.; Weiner, L.M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 2005, 23, 1147–1157, doi:10.1038/nbt1137.
[41]  Deonarain, M.P.; Kousparou, C.A.; Epenetos, A.A. Antibodies targeting cancer stem cells: A new paradigm in immunotherapy? mAbs 2005, 1, 12–27.
[42]  Schliemann, C.; Neri, D. Antibody-based vascular tumor targeting. Recent Results Cancer Res. 2010, 180, 201–216, doi:10.1007/978-3-540-78281-0_12.
[43]  Gunawan, R.C.; Almeda, D.; Augute, D.T. Complementary targeting of liposomes to IL-1a and TNF-a activated endothelial cells via the transient expression of VCAM1 and E-selectin. Biomaterials 2011, 32, 9848–9853, doi:10.1016/j.biomaterials.2011.08.093.
[44]  Gunawan, R.C.; Auguste, D.T. The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials 2010, 31, 900–907, doi:10.1016/j.biomaterials.2009.09.107.
[45]  Gunawan, R.C.; Auguste, D.T. Immunoliposomes that targeted endothelium in vitro are dependent on lipid raft formation. Mol. Pharma. 2010, 7, 1569–1575, doi:10.1021/mp9003095.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133