全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Coatings  2011 

Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

DOI: 10.3390/coatings1010017

Keywords: thermal spray, coating, HVOF, optimization, characterization, standardization

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work High Velocity Oxy-fuel (HVOF) thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

References

[1]  Cho, J.Y.; Zhang, S.H.; Cho, T.Y.; Yoon, J.H.; Joo, Y.K.; Hur, S.K. The processing optimization and property evaluations of HVOF Co-base alloy T800 coating. J. Mater. Sci. 2009, 44, 6348–6355.
[2]  Tillmann, W.; Vogli, E.; Baumann, I.; Kopp, G.; Weihs, C. Desirability-Based Multi-Criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings. J. Therm. Spray Technol. 2010, 19, 392–408.
[3]  Mostaghimi, J.; Chandra, S.; Ghafouri-Azar, R.; Dolatabadi, A. Modeling thermal spray coating processes: A powerful tool in design and optimization. Surf. Coat. Technol. 2003, 163-164, 1–11.
[4]  Dongmo, E.; Wenzelburger, M.; Gadow, M. Analysis and optimization of the HVOF process by combined experimental and numerical approaches. Surf. Coat. Technol. 2008, 202, 4470–4478.
[5]  Bansal, P.; Shipway, P.H.; Leen, S.B. Residual stresses in high-velocity oxy-fuel thermally sprayed coatings—Modelling the effect of particle velocity and temperature during the spraying process. Acta Mater. 2007, 55, 5089–5101.
[6]  Sampath, S.; Jiang, X.; Kulakarni, A.; Matejicek, J.; Gilmore, D.L.; Neiser, R.A. Development of process maps for plasma spray: Case study for molybdenum. Mater. Sci. Eng. A 2003, 348, 54–66.
[7]  Turunen, E.; Varis, T.; Gustafsson, T.E.; Keskinen, J.; F?lt, T.; Hannula, S.-P. Parameters optimization of HVOF sprayed nanostructured alumina and alumina-nickel composite coatings. Surf. Coat. Technol. 2006, 200, 4987–4994.
[8]  Vaidya, A.; Srinivasan, V.; Streibl, T.; Friis, M.; Chi, W.; Sampath, S. Process maps for plasma spraying of yttria-stabilized zirconia: An integrated approach to design, optimization and reliability. Mater. Sci. Eng. A 2008, 497, 239–253.
[9]  Zhang, W.; Sampath, S.A. Universal method for representation of in-flight particle characteristics in thermal spray processes. J. Therm. Spray Technol. 2009, 18, 23–34.
[10]  Valarezo, A.; Choi, W.B.; Chi, W.; Gouldstone, A.; Sampath, S. Process control and characterization of NiCr coatings by HVOF-DJ2700 system: A process map approach. J. Therm. Spray Technol. 2010, 19, 852–865.
[11]  Fauchais, P.; Vardelle, M. Sensors in spray processes. J. Therm. Spray Technol. 2010, 19, 668–694.
[12]  Sampath, S.; Srinivasan, V.; Valarezo, A.; Vaidya, A.; Streibl, T. Sensing, control, and in situ measurement of coating properties: An integrated approach toward establishing process-property correlations. J. Therm. Spray Technol. 2009, 18, 243–255.
[13]  Handbook of Thermal Spray Technology; Davis, J.R., Ed.; ASM International: Materials Park, OH, USA, 2004; p. 338.
[14]  Vaidya, A.; Streibl, T.; Li, L.; Sampath, S.; Kovarik, O.; Greenlaw, R. An integrated study of thermal spray process-structure-property correlations: A case study for plasma sprayed molybdenum coatings. Mater. Sci. Eng. A 2005, 403, 191–204.
[15]  Turunen, E.; Varis, T.; Hannula, S.-P.; Vaidya, A.; Kulkarni, A.; Gutleber, J.; Sampath, S.; Herman, H. On the role of particle state and deposition procedure on mechanical, tribological and dielectric response of high velocity oxy-fuel sprayed alumina coatings. Mater. Sci. Eng. A 2006, 415, 1–11.
[16]  Dwivedi, G.; Wentz, T.; Sampath, S.; Nakamura, T. Assessing process and coating reliability through monitoring of process and design relevant coating properties. J. Therm. Spray Technol. 2010, 19, 695–712.
[17]  Hannula, S.-P.; Suhonen, T.; Varis, T.; Turunen, E. Challenges in processing and characterization of thermal sprayed coatings. Proceedings of “Product Property Prediction—P3” Conference, Dortmund, Germany, 12–13 April 2010; p. 12.
[18]  Vaidya, A.; Bancke, G.; Sampath, S.; Herman, H. Influence of process variables on the plasma sprayed coatings—An integrated study. Proceedings of International Thermal Spray Conference, Singapore, Singapore, 28–30 May 2001; pp. 1345–1349.
[19]  Matejicek, J.; Sampath, S. In-situ measurements of residual stresses and elastic moduli in thermal sprayed coatings: Part 1: Apparatus and analysis. Acta Mater. 2003, 51, 863–872.
[20]  Fisher-Cripps, A.C. Nanoindentation, 2nd edition ed.; Mechanical Engineering Series; Springer: New York, NY, USA, 2004; p. 263.
[21]  EN ISO 4516:2002. Metallic and other inorganic coatings. In Vickers and Knoop Microhardness Tests?; European Committee for Standardization: City, Country, 2002.
[22]  Suhonen, T.; Varis, T.; Turunen, E.; Liu, X.; Yanling, G.; S?derberg, O.; Hannula, S.-P. Modelling the effect of microstructure on mechanical properties of HVOF sprayed WC-CoCr coatings. Proceedings of WMRIF Workshop for Young Scientists, Tsukuba, Japan, 22–25 July 2008.
[23]  ASTM E 1876-09. Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration.; American Society for Testing and Materials: West Conshohocken, PA, USA, 2009.
[24]  ENV 843-2:1997. Advanced Technical Ceramics—Monolithic Ceramics, Mechanical Properties at Room Temperature—Part 2: Determination of Elastic Moduli.; European Committee for Standardization: City, Country, 1997.
[25]  Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.
[26]  Griffith, A.A. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London A 1920, 221, 163–198. (This article has been republished with additional commentary in Trans.ASM 61, 871, 1968).
[27]  JIS R 1688:2005. Testing Method for Fracture Toughness of Porous Fine Ceramics; Japanese Standards Association: Tokyo, Japan, 2005.
[28]  Deshpande, S.; Kulkarni, A.; Sampath, S.; Herman, H. Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering. Surf. Coat. Technol. 2004, 187, 6–16.
[29]  Fowler, D.B.; Riggs, W.; Russ, J.C. Inspecting thermal sprayed coatings. Adv. Mater. Proc. 1990, 11, 41–52.
[30]  Komatsu, M.; Kuroda, S.; Sodeoka, S.; Sakoda, N.; Lee, S.W. Porosity measurement of thermal sprayed ceramic coatings by SEM cross sectional photography and image analysis—Round Robin test for ISO standardization. Proceedings of Asian Thermal Spray Conference, Xi'an, China, 22–24 October 2009.
[31]  Mailhot, K.; Gitzhofer, F.; Boulos, M.I. Absolute coating porosity measurement using image analysis. Proceedings of the 15th ITSC, Nice, France; 1998; 1, pp. 917–922.
[32]  Final Report. In Aircraft Accident Investigation of Copterline Oy, Sikorsky S-76C+ in Tallinn Bay, Estonia on 10th August 2005.; Ministry of Economic Affairs and Communications: Estonia, 2008. Retrieved 11 August 2008.
[33]  EN 582:1993. Determination of Tensile Adhesive Strength; European Committee for Standardization: City, country, 1993.
[34]  Marot, G.; Lesage, J.; Démarécaux, P.H.; Hadad, M.; Siegmann, St.; Staia, M.H. Interfacial indentation and shear tests to determine the adhesion of thermal spray coatings. Surf. Coat. Technol. 2006, 201, 2080–2085.
[35]  Noyan, I.C.; Cohen, J.B. Residual Stress—Measurement by Diffraction and Interpretation; Springer-Verlag: New York, NY, USA, 1987; p. 626.
[36]  Pina, J.; Dias, A.; Lebrun, J.L. Mechanical stiffness of thermally sprayed coatings and elastic constants for stress evaluation by X-ray diffraction. Mater. Sci. Eng. A 1999, 267, 130–144.
[37]  Matejicek, J.; Sampath, S. In-situ measurements of residual stresses and elastic moduli in thermal sprayed coatings: Part 1: Apparatus and analysis. Acta Mater. 2003, 51, 863–872.
[38]  ASTM G75-95. Standard Test Method for Determination of Slurry Abrasivity (Miller Number) and Slurry Abrasion Response of Materials (SAR Number); American Society for Testing and Materials: West Conshohocken, PA, USA, 1995.
[39]  Verdon, C.; Karimi, A.; Martin, J.-L. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures. Mater. Sci. Eng. A 1998, 246, 11–24.
[40]  Stewart, D.A.; Shipway, P.H.; McCartney, D.G. Influence of heat treatment on the abrasive wear behavior of HVOF sprayed WC-Co coatings. Surf. Coat. Technol. 1998, 105, 13–24.
[41]  Li, X.M.; Yang, Y.Y.; Shao, T.M.; Jin, Y.S.; Barbezat, G. Impact wear performances of Cr3C2—NiCr coatings by plasma and HVOF spraying. Wear 1997, 202, 208–214.
[42]  Jones, M.; Horlock, A.J.; Shipway, P.H.; McCartney, D.G.; Wood, J.V. A comparison of the abrasive wear behaviour of HVOF sprayed titanium carbide and titanium boride-based cermet coatings. Wear 2001, 251, 1009–1016.
[43]  Horlock, A.J.; McCartney, D.G.; Shipway, P.H.; Wood, J.V. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagation high temperature synthesis: Microstructure and abrasive wear behaviour. Mater. Sci. Eng. A 2002, 336, 88–98.
[44]  Wang, B.-Q. The dependence of erosion—Corrosion wastage on carbide/metal binder proportion for HVOF carbide-metal cermet coatings. Wear 1996, 196, 141–146.
[45]  Hawthorne, H.M.; Arsenault, B.; Immarigeon, J.P.; Legoux, J.G.; Parameswaran, V.R. Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings. Wear 1999, 225-229, 825–834.
[46]  Mann, B.S.; Arya, V. Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: Their application in hydro turbines. Wear 2001, 249, 354–360.
[47]  Berget, J.; Rogne, T.; Bardal, E. Erosion-corrosion properties of different WC-Co-Cr coatings deposited by the HVOF process—Influence of metallic matrix composition and spray powder size distribution. Surf. Coat. Technol. 2007, 201, 7619–7625.
[48]  Zhou, Z.; Wang, L.; Wang, F.C.; Zhang, H.F.; Liu, Y.B.; Xu, S.H. Formation and corrosion behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying. Surf. Coat. Technol. 2009, 204, 563–570.
[49]  Lima, R.S.; Marple, B.R. From APS to HVOF spraying of conventional and nanostructured titania feedstock powders: A study on the enhancement of the mechanical properties. Surf. Coat. Technol. 2006, 200, 3428–3437.
[50]  Turunen, E.; Varis, T.; Gustafsson, T.; Keskinen, J.; Lintunen, P.; F?lt, T.; Nowak, R.; Hannula, S.-P. Process optimization for nanostructured HVOF-sprayed Al2O3-based ceramic coatings. Key. Eng. Mater. 2006, 317-318, 545–554.
[51]  Turunen, E.; Varis, T.; Keskinen, J.; F?lt, T.; Hannula, S.-P. Improved mechanical properties by nanoreinforced ceramic composite HVOF coatings. Adv. Sci. Technol. 2006, 45, 1240–1245.
[52]  Turunen, E.; Hirvonen, A.; Varis, T.; F?lt, T.; Hannula, S.-P.; Sekino, T.; Niihara, K. Application of HVOF techniques for spraying of ceramic coatings. Adv. Technol. Mater. 2007, 9, 63–68.
[53]  Bolelli, G.; Lusvarghi, L.; Manfredini, T.; Mantini, P.F.; Polini, R.; Turunen, E.; Varis, T.; Hannula, S.-P. Comparison between plasma- and HVOF-sprayed ceramic coatings. Part I: Microstructure and mechanical properties. Int. J. Surf. Sci. Eng. 2007, 1, 38–61.
[54]  Brandl, W.; Toma, D.; Krüger, J.; Grabke, H.J.; Matth?us, G. The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf. Coat. Technol. 1997, 93-95, 21–26.
[55]  Gil, L.; Staia, M.H. Influence of HVOF parameters on the corrosion resistance of NiWCrBSi coatings. Thin Solid Films 2002, 420-421, 446–454.
[56]  Zhao, W.-M.; Wang, Y.; Dong, L.-X.; Wu, K.-Y.; Xue, J. Corrosion mechanism of NiCrBSi coatings deposited by HVOF. Surf. Coat. Technol. 2005, 190, 293–298.
[57]  Kawakita, J.; Kuroda, S.; Kodama, T. Evaluation of through-porosity of HVOF sprayed coating. Surf. Coat. Technol. 2003, 166, 17–23.
[58]  Chidambarama, D.; Clayton, C.; Dorfman, M. Evaluation of the electrochemical behavior of HVOF-sprayed alloy coatings. Surf. Coat. Technol. 2004, 176, 307–317.
[59]  Chidambarama, D.; Claytona, C.R.; Dorfman, M.R. Evaluation of the electrochemical behavior of HVOF-sprayed alloy coatings—II. Surf. Coat. Technol. 2005, 192, 278–283.
[60]  Rastegar, F.; Richardson, D.E. Alternative to chrome: HVOF cermet coatings for high horse power diesel engines. Surf. Coat. Technol. 1997, 90, 156–163.
[61]  Nascimento, M.P.; Souza, R.C.; Miguel, I.M.; Pigatin, W.L.; Voorwald, H.J.C. Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel. Surf. Coat. Technol. 2001, 138, 113–124.
[62]  Sahraoui, T.; Fenineche, N.-E.; Montavon, G.; Coddet, C. Alternative to chromium: Characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty). J. Mater. Processing Technol. 2004, 152, 43–55.
[63]  Guilemany, J.M.; Espallargas, N.; Suegama, P.H.; Benedetti, A.V. Comparative study of Cr3C2-NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 2006, 48, 2998–3001. ?
[64]  Bolelli, G.; Cannillo, V.; Lusvarghi, L.; Ricco, S. Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf. Coat. Technol. 2006, 200, 2995–3009.
[65]  Bolelli, G.; Lusvarghi, L.; Manfredini, T.; Mantini, P.F.; Turunen, E.; Varis, T.; Hannula, S.-P. Comparison between plasma- and HVOF-sprayed ceramic coatings. Part II: Tribological behaviour. Int. J. Surf. Sci. Engin. 2007, 1, 62–79.
[66]  Guilemany, J.M.; Espallargas, N.; Suegama, P.H.; Benedetti, A.V. Comparative study of Cr3C2-NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 2006, 48, 2998–3013.
[67]  Sidhu, T.S.; Prakash, S.; Agrawal, R.D. Evaluation of hot corrosion resistance of HVOF coatings on a Ni-based superalloy in molten salt. environment, Mater. Sci. Eng. A 2006, 430, 64–78.
[68]  Sidhu, H.S.; Sidhu, B.S.; Prakash, S. The role of HVOF coatings in improving hot corrosion resistance of ASTM-SA210 GrA1 steel in the presence of Na2SO4-V2O5 salt deposits. Surf. Coat. Technol. 2006, 200, 5386–5394.
[69]  Stewart, D.A.; Shipway, P.H.; McCartney, D.G. Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings. Wear 1999, 225-229, 789–798.
[70]  Berger, L.M.; Woydt, M.; Saaro, S. Comparison of self-mated hardmetal coatings under dry sliding conditions up to 600 °C. Wear 2009, 266, 406–416.
[71]  Ramesh, M.R.; Prakash, S.; Nath, S.K.; Sapra, P.K.; Venkataraman, B. Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings. Wear 2010, 269, 197–205.
[72]  Oksa, M.; K?rki, J.; Varis, T.; Turunen, E. Corrosion resistance of HVOF coatings in a biofuel boiler plant. Proceedings of EUROCORR 2005 The European Corrosion Congress, Lissabon, Country, 4–8 September 2005; p. 9.
[73]  Sidhu, T.S.; Prakash, S.; Agrawal, R.D. Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite—6 coatings on Ni- and Fe-based superalloys. Surf. Coat. Technol. 2006, 201, 273–281.
[74]  Kawahara, Y. Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers. J. Therm. Spray Technol. 2007, 16, 202–213.
[75]  Lima, C.R.C.; Guilemany, J.M. Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf. Coat. Technol. 2007, 201, 4694–4701.
[76]  Gibbons, G.J.; Hansell, R.G. Thermal-sprayed coatings on aluminium for mould tool protection and upgrade. J. Mater. Process. Technol. 2008, 204, 184–191.
[77]  Matthews, S.; James, B. Review of thermal spray coating applications in the steel industry: Part 2—Zinc pot hardware in the continuous galvanizing line. J. Therm. Spray Technol. 2010, 19, 1277–1286.
[78]  Bolelli, G.; Lusvarghi, L.; Barletta, M. HVOF-sprayed WC-CoCr coatings on Al alloy: Effect of the coating thickness on the tribological properties. Wear 2009, 267, 944–953.
[79]  Hamashima, K. Application of new boride cermet coating to forming of glass sheets. J. Therm. Spray Technol. 2007, 16, 32–33.
[80]  Espallargas, N.; Berget, J.; Guilemany, J.M.; Benedetti, A.V.; Suegama, P.H. Cr3C2-NiCr and WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance. Surf. Coat. Technol. 2008, 202, 1405–1417.
[81]  Fedrizzi, L.; Rossi, S.; Cristel, R.; Bonora, P.L. Corrosion and wear behaviour of HVOF cermet coatings used to replace hard chromium. Electrochim. Acta 2004, 49, 2803–2814.
[82]  Picas, J.A.; Fornand, A.; Matth?us, G. HVOF coatings as an alternative to hard chrome for pistons and valves. Wear 2006, 261, 477–484.
[83]  Bonora, R.G.; Voorwald, H.J.C.; Cioffi, M.O.H.; Junior, G.S.; Santos, L.F.V. Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Engin. 2010, 2, 1617–1623.
[84]  Cherigui, M.; Fenineche, N.E.; Ji, G.; Grosdidier, T.; Coddet, C. Microstructure and magnetic properties of Fe-Si-based coatings produced by HVOF thermal spraying process. J. Alloys Compd. 2007, 427, 281–290.
[85]  Gadow, R.; Killinger, A.; Stiegler, N. Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf. Coat. Technol. 2010, 205, 1157–1164.
[86]  Lima, R.S.; Khor, K.A.; Li, H.; Cheang, P.; Marple, B.R. HVOF spraying of nanostructured hydroxyapatite for biomedical applications. Mater. Sci. Eng. A 2005, 396, 181–187.
[87]  Gaona, M.; Lima, R.S.; Marple, B.R. Influence of particle temperature and velocity on the microstructure and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed nanostructured titania coatings. J. Mater. Process. Technol. 2008, 198, 426–435.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413