In memoriam Jeffrey S. Wicken (1942–2002)—the evolutionarily minded biochemist, who in the 1970/80s strived for a synthesis of biological and physical theories to fathom the tentative origins of life. Several integrative concepts are worth remembering from Wicken’s legacy. (i) Connecting life’s origins and complex organization to a preexisting physical world demands a thermodynamically sound transition. (ii) Energetic ‘charging’ of the prebiosphere must precede the emergence of biological organization. (iii) Environmental energy gradients are exploited progressively, approaching maximum interactive structure and minimum dissipation. (iv) Dynamic self-assembly of prebiotic organic matter is driven by hydrophobic tension between water and amphiphilic building blocks, such as aggregating peptides from non-polar amino acids and base stacking in nucleic acids. (v) The dynamics of autocatalytic self-organization are facilitated by a multiplicity of weak interactions, such as hydrogen bonding, within and between macromolecular assemblies. (vi) The coevolution of (initially uncoded) proteins and nucleic acids in energy-coupled and metabolically active so-called ‘microspheres’ is more realistic as a kinetic transition model of primal biogenesis than ‘hypercycle replication’ theories for nucleic acid replicators on their own. All these considerations blend well with the current understanding that sunlight UV-induced photo-electronic excitation of colloidal metal sulfide particles appears most suitable as a prebiotic driver of organic synthesis reactions, in tight cooperation with organic, phase-separated, catalytic ‘microspheres’. On the ‘continuist vs. miraculist’ schism described by Iris Fry for origins-of-life considerations (Table 1), Wicken was a fervent early protagonist of holistic ‘continuist’ views and agenda.
References
[1]
Wicken, J.S. Evolution, Thermodynamics, and Information: Extending the Darwinian Program; Oxford University Press: New York, NY, USA, 1987.
[2]
Schneider, E.D.; Sagan, D. Into the Cool: Energy Flow, Thermodynamics and Life; University of Chicago Press: Chicago, IL, USA, 2005.
[3]
Pross, A. The driving force for life’s emergence: Kinetic and thermodynamic considerations. J. Theor. Biol.?2003, 220, 393–406, doi:10.1006/jtbi.2003.3178.
[4]
Caetano-Anollés, G.; Yafremava, L.S.; Mittenthal, J.E. Modularity and dissipation in evolution of macromolecular structures, functions, and networks. In Evolutionary Genomics and Systems Biology; Caetano-Anollés, G., Ed.; Wiley: Hoboken, NJ, USA, 2010; pp. 431–450.
[5]
Egel, R. Integrative perspectives: In quest of a coherent framework for origins of life on earth. In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.-H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 289–360.
[6]
Wicken, J.S. Evolution and thermodynamics: The new paradigm. Syst. Res.?1989, 6, 181–186, doi:10.1002/sres.3850060301.
[7]
Brooks, D.R.; Collier, J.; Wiley, E.O. Definitions of terms and the essence of theories: A reply to J. S. Wicken. Syst. Zool.?1986, 35, 640–647, doi:10.2307/2413124.
[8]
Weber, B.H. Extending and expanding the Darwinian synthesis: The role of complex systems dynamics. Stud. Hist. Philos. Biol. Biomed. Sci.?2011, 42, 75–81, doi:10.1016/j.shpsc.2010.11.014.
[9]
Retired biochemist Black mourned. NIH Record/Milestones. Available online: http://nihrecord.od.nih.gov/newsletters/2008/02_08_2008/milestones.htm (accessed on 29 October 2012).
[10]
Black, S. A theory on the origin of life. Adv. Enzymol. Relat. Areas Mol. Biol.?1973, 38, 193–234.
[11]
Black, S. On the thermodynamics of evolution. Perspect. Biol. Med.?1978, 21, 348–356.
[12]
Schr?dinger, E. What is Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944.
[13]
Delbrück, M. Radiation and the hereditary mechanism. Amer. Naturalist?1940, 74, 350–362.
[14]
Lazcano, A. What is life? A brief historical overview. Chem. Biodivers.?2008, 5, 1–15, doi:10.1002/cbdv.200890001.
[15]
Layzer, D. Cosmic evolution and thermodynamic irreversibility. Pure Appl. Chem.?1970, 22, 457–468, doi:10.1351/pac197022030457.
[16]
Layzer, D. The arrow of time. Sci. Am.?1975, 233, 56–59, doi:10.1038/scientificamerican1275-56.
[17]
Layzer, D. Cosmogenesis: The Growth of Order in the Universe; Oxford University Press: New York, NY, USA, 1990; p. 4.
[18]
Lotka, A.J. Contribution to the energetics of evolution. Proc. Natl. Acad. Sci. USA?1922, 8, 147–151, doi:10.1073/pnas.8.6.147.
[19]
Lotka, A.J. Natural selection as a physical principle. Proc. Natl. Acad. Sci. USA?1922, 8, 151–154, doi:10.1073/pnas.8.6.151.
[20]
Sciubba, E. What did Lotka really say? A critical reassessment of the “maximum power principle”. Ecol. Model.?2011, 222, 1347–1353, doi:10.1016/j.ecolmodel.2011.02.002.
[21]
Wicken, J.S. Thermodynamics and the conceptual structure of evolutionary theory. J. Theor. Biol.?1985, 117, 363–383, doi:10.1016/S0022-5193(85)80149-1.
[22]
Ayala, F.J. The autonomy of biology as a natural science. In Biology, History, and Natural Philosophy; Breck, A.D., Yourgrau, W., Eds.; Plenum: New York, NY, USA, 1972; pp. 1–16.
[23]
Mayr, E. The autonomy of biology: The position of biology among the sciences. Q. Rev. Biol.?1996, 71, 97–106.
[24]
Yockey, H.P. A calculation of the probability of spontaneous biogenesis by information theory. J. Theor. Biol.?1977, 67, 377–398, doi:10.1016/0022-5193(77)90044-3.
[25]
Wicken, J.S. Information transformations in molecular evolution. J. Theor. Biol.?1978, 72, 191–204, doi:10.1016/0022-5193(78)90025-5.
[26]
Wicken, J.S. The generation of complexity in evolution: An information-theoretical and thermodynamic discussion. J. Theor. Biol.?1979, 77, 349–365, doi:10.1016/0022-5193(79)90361-8.
[27]
Wicken, J.S. A thermodynamic theory of evolution. J. Theor. Biol.?1980, 87, 9–23, doi:10.1016/0022-5193(80)90216-7.
[28]
Ulanowicz, R. Towards quantifying a wider reality: Shannon exonerata. Information?2011, 2, 624–634, doi:10.3390/info2040624.
[29]
Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften?1971, 58, 465–523, doi:10.1007/BF00623322.
[30]
Eigen, M. Molecular self-organization and the early stages of evolution. Quart. Rev. Biophys.?1971, 4, 149–212, doi:10.1017/S0033583500000627.
[31]
Eigen, M.; Schuster, P. The hypercycle: A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften?1977, 64, 541–565, doi:10.1007/BF00450633.
[32]
Eigen, M.; Schuster, P. The hypercycle: A principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften?1978, 65, 7–41, doi:10.1007/BF00420631.
[33]
Eigen, M.; Schuster, P. The hypercycle: A principle of natural self-organization. Part C: The realistic hypercycle. Naturwissenschaften?1978, 65, 341–369, doi:10.1007/BF00439699.
[34]
Eigen, M.; Gardiner, W.C.; Schuster, P. Hypercycles and compartments. Compartments assist—but do not replace—hypercyclic organization of early genetic information. J. Theor. Biol.?1980, 85, 407–411, doi:10.1016/0022-5193(80)90315-X.
[35]
Eigen, M.; Schuster, P. Stages of emerging life: Five principles of early organization. J. Mol. Evol.?1982, 19, 47–61, doi:10.1007/BF02100223.
[36]
Wicken, J.S. An organismic critique of molecular Darwinism. J. Theor. Biol.?1985, 117, 545–561, doi:10.1016/S0022-5193(85)80237-X.
[37]
Eigen, M.; Gardiner, W.; Schuster, P.; Winkler-Oswatitsch, R. The origin of genetic information. Sci. Am.?1981, 244, 78–94, doi:10.1038/scientificamerican0481-78.
[38]
Dyson, F.J. A model for the origin of life. J. Mol. Evol.?1982, 18, 344–350, doi:10.1007/BF01733901.
[39]
Kauffman, S.A. The Origins of Order; Oxford University Press: Oxford, UK, 1993.
[40]
Kurland, C.G. The RNA dreamtime. BioEssays?2010, 32, 866–871, doi:10.1002/bies.201000058.
[41]
Wicken, J.S. Can the information contents of biological systems be quantified? Syst. Res.?1989, 6, 133–142, doi:10.1002/sres.3850060205.
Strick, J.E. Creating a cosmic discipline: The crystallization and consolidation of exobiology, 1957-1973. J. Hist. Biol.?2004, 37, 131–180, doi:10.1023/B:HIST.0000020279.73895.f2.
[44]
Commeyras, A.; Boiteau, L.; Vandenabeele-Trambouze, O.; Selsis, F. Peptide emergence, evolution and selection on the primitive Earth. II. The primary pump scenario. In Lectures in Astrobiology; Gargaud, M., Barbier, B., Martin, H., Reisse, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1, pp. 547–569.
[45]
Plankensteiner, K.; Reiner, H.; Rode, B.M. Prebiotic chemistry: The amino acid and peptide world. Curr. Org. Chem.?2005, 9, 1107–1114, doi:10.2174/1385272054553640.
[46]
Danger, G.; Plasson, R.; Pascal, R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem. Soc. Rev.?2012, 41, 5416–5429, doi:10.1039/c2cs35064e.
[47]
Powner, M.W.; Sutherland, J.D. Prebiotic chemistry: A new modus operandi. Phil. Trans. R. Soc. B?2011, 366, 2870–2877, doi:10.1098/rstb.2011.0134.
[48]
Matsuno, K. Natural self-organization of polynucleotides and polypeptides in protobiogenesis: Appearance of a protohypercycle. BioSystems?1982, 15, 1–11, doi:10.1016/0303-2647(82)90012-0.
[49]
Fry, I. Are the different hypotheses on the emergence of life as different as they seem? Biol. Philos.?1995, 10, 389–417, doi:10.1007/BF00857591.
[50]
Koonin, E.V. On the origin of cells and viruses: primordial virus world scenario. Ann. NY Acad. Sci.?2009, 1178, 47–64, doi:10.1111/j.1749-6632.2009.04992.x.
[51]
Egel, R. Primal eukaryogenesis: On the communal nature of precellular states, ancestral to modern life. Life?2012, 2, 170–212, doi:10.3390/life2010170.
[52]
Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution; Weber, B., Depew, D., Smith, J., Eds.; MIT Press: Cambridge, MA, USA, 1988.
[53]
Depew, D. Nonequilibrium thermodynamics and evolution: A philosophical perspective. Philosophica?1986, 37, 27–58.
[54]
Buenstorf, G. Self-organization and sustainability: Energetics of evolution and implication for ecological economics. Ecol. Econ.?2000, 33, 119–134, doi:10.1016/S0921-8009(99)00133-0.
[55]
Wicken, J.S. Thermodynamics, evolution, and emergence: Ingredients for a new synthesis. In Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution; Weber, B., Depew, D., Smith, J., Eds.; MIT Press: Cambridge, MA, USA, 1988; pp. 139–169.
[56]
Wicken, J.S. Entropy and evolution: Ground rules for discourse. Syst. Zool.?1986, 35, 22–36, doi:10.2307/2413288.
[57]
Wicken, J.S. Entropy and information: Suggestions for a common language. Philos. Sci.?1987, 54, 176–193.
[58]
Wiley, E.O.; Brooks, D.R. Victims of history—a nonequilibrium approach to evolution. Syst. Zool.?1982, 31, 2–24.
[59]
Brooks, D.R.; Wiley, E.O. Evolution as Entropy: Toward a Unified Theory of Biology; Univ. Chicago Press: Chicago, IL, USA, 1986.
[60]
Dawkins, R. The Selfish Gene; Oxford University Press: London, UK, 1976.
[61]
Richard Dawkins: How a Scientist Changed the Way we Think; Grafen, A., Ridley, M., Eds.; Oxford University Press: London, UK, 2006.
Wicken, J.S. Evolutionary self-organization and entropic dissipation in biological and socioeconomic systems. J. Soc. Biol. Struct.?1986, 9, 261–273, doi:10.1016/S0140-1750(86)80029-X.
[64]
Schneider, E.D.; Kay, J.J. Life as a manifestation of the second law of thermodynamics. Math. Comput. Modeling?1994, 19, 25–48, doi:10.1016/0895-7177(94)90188-0.
[65]
Nicolis, G.; Prigogine, I. Fluctuations in nonequilibrium systems. Proc. Natl. Acad. Sci. USA?1971, 68, 2102–1207, doi:10.1073/pnas.68.9.2102.
[66]
Prigogine, I. Time, structure and fluctuations. Science?1978, 201, 777–785.
[67]
Schneider, E.D.; Kay, J.J. Order from disorder: The thermodynamics of complexity in biology. In What is Life: The Next Fifty Years. Reflections on the Future of Biology; Murphy, M.P., O’Neill, L.A.J., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 161–172.
[68]
Whitfield, J. Survival of the likeliest? PLoS Biol.?2007, 5, e142:1–e142:4.
[69]
Dewar, R.C.; Franklin, O.; Makela, A.; McMurtrie, R.E.; Valentine, H.T. Optimal function explains forest responses to global change. Bioscience?2009, 59, 127–139, doi:10.1525/bio.2009.59.2.6.
[70]
Kleidon, A.; Malhi, Y.; Cox, P.M. Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B?2010, 365, 1297–1302, doi:10.1098/rstb.2010.0018.
[71]
Martyushev, L.M.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep.?2006, 426, 1–45, doi:10.1016/j.physrep.2005.12.001.
[72]
Caetano-Anolles, G.; Yafremava, L.S.; Mittenthal, J.M. Modularity and dissipation in the evolution of molecular function, structures and networks. In Evolutionary Bioinformatics and Systems Biology; Caetano-Anollés, G., Ed.; John Wiley: Hoboken, NJ, USA, 2010; pp. 431–450.
[73]
Michaelian, K. Biological catalysis of the hydrological cycle: Life’s thermodynamic function. Hydrol. Earth Syst. Sci. Discuss.?2011, 8, 1093–1123, doi:10.5194/hessd-8-1093-2011.
[74]
Michaelian, K. Entropy production and the origin of life. J. Mod. Phys.?2011, 2, 595–601, doi:10.4236/jmp.2011.226069.
[75]
Wicken, J.S. Chance, necessity, and purpose: Toward a philosophy of evolution. Zygon?1981, 16, 303–322, doi:10.1111/j.1467-9744.1981.tb00421.x.
[76]
Mayr, E. Teleological and teleonomic, a new analysis. In Methodological and Historical Essays in the Natural and Social Sciences; Cohen, R.S., Wartofsky, M.W., Eds.; Reidel Publ.: Dordrecht, Netherlands, 1974.
[77]
Pittendrigh, C.S. Adaptation, natural selection and behavior. In Behaviour and Evolution; Roe, A., Simpson, G.G., Eds.; Yale University Press: New Haven, CT, USA, 1958; pp. 390–416.
[78]
Eschenmoser, A. Chemistry of potentially prebiological natural products. Orig. Life Evol. Biosph.?1994, 24, 389–423, doi:10.1007/BF01582017.
[79]
Pross, A. On the chemical nature and origin of teleonomy. Orig. Life. Evol. Biosph.?2005, 35, 383–394, doi:10.1007/s11084-005-2045-9.
[80]
Pross, A. How can a chemical system act purposefully? Bridging between life and non-life. J. Phys. Org. Chem.?2008, 21, 724–730, doi:10.1002/poc.1382.
[81]
Pross, A. Causation and the origin of life. Metabolism or replication first? Orig. Life. Evol. Biosph.?2004, 34, 307–321, doi:10.1023/B:ORIG.0000016446.51012.bc.
[82]
Pross, A. Toward a general theory of evolution: Extending Darwinian theory to inanimate matter. J. Syst. Chem.?2011, 2, 1:1–1:14.
[83]
de Duve, C. Clues from present-day biology: the thioester world. In The Molecular Origins of Life; Brack, A., Ed.; Cambridge Univ Press: Cambridge, UK, 1998; pp. 219–236.
[84]
Jakubowski, H. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases. J. Biol. Chem.?2000, 275, 34845–34848, doi:10.1074/jbc.C000577200.
[85]
Mocibob, M.; Ivic, N.; Bilokapic, S.; Maier, T.; Luic, M.; Ban, N.; Weygand-Durasevic, I. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis. Proc. Natl. Acad. Sci. USA?2010, 107, 14585–14590.
[86]
Zhao, Y.F.; Cao, P.S. Phosphoryl amino-acids—common origin for nucleic-acids and protein. J. Biol. Phys.?1994, 20, 283–287, doi:10.1007/BF00700446.
[87]
Han, D.X.; Wang, H.Y.; Ji, Z.L.; Hu, A.F.; Zhao, Y.F. Amino acid homochirality may be linked to the origin of phosphate-based life. J. Mol. Evol.?2010, 70, 572–582, doi:10.1007/s00239-010-9353-z.
[88]
Lazcano, A. Historical development of origins research. Cold Spring Harb. Perspect. Biol.?2010, 2, a002089:1–a002089:17.
[89]
Russell, M.J.; Hall, A.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond.?1997, 154, 377–402, doi:10.1144/gsjgs.154.3.0377.
[90]
Martin, W.; Russell, M.J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond. B Biol. Sci.?2003, 358, 59–85, doi:10.1098/rstb.2002.1183.
[91]
Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol.?2008, 6, 805–814.
[92]
Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology?2010, 8, 355–371, doi:10.1111/j.1472-4669.2010.00249.x.
[93]
Zhang, X.V.; Ellery, S.P.; Friend, C.M.; Holland, H.D.; Michel, F.M.; Schoonen, M.A.A.; Martin, S.T. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: Implications for prebiotic synthesis. J. Photochem. Photobiol. A Chem.?2007, 185, 301–311, doi:10.1016/j.jphotochem.2006.06.025.
[94]
Mulkidjanian, A.Y. Origin of life in the Zinc World: 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biol. Direct?2009, 4, 26–39, doi:10.1186/1745-6150-4-26.
[95]
Mulkidjanian, A.Y.; Bychkov, A.Y.; Dibrova, D.V.; Galperin, M.Y.; Koonin, E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl. Acad. Sci. USA?2012, 109, E821–E830.
[96]
Macallum, A.B. The paleochemistry of the body fluids and tissues. Physiol. Rev.?1926, 6, 316–357.
[97]
Mulkidjanian, A.Y.; Galperin, M.Y. Physico-chemical and evolutionary constraints for the formation and selection of first biopolymers: Towards the consensus paradigm of the abiogenic origin of life. Chem. Biodivers.?2007, 4, 2003–2015, doi:10.1002/cbdv.200790167.
[98]
Sobolewski, A.L.; Domcke, W. On the mechanism of rapid non-radiative decay in intramolecularly hydrogen-bonded π systems. Chem. Phys. Lett.?1999, 300, 533–539, doi:10.1016/S0009-2614(98)01433-X.
[99]
Sobolewski, A.L.; Domcke, W. The chemical physics of the photostability of life. Europhys. News?2006, 37, 20–23, doi:10.1051/epn:2006405.
[100]
Mulkidjanian, A.Y.; Cherepanov, D.A.; Galperin, M.Y. Survival of the fittest before the beginning of life: Selection of the first oligonucleotide-like polymers by UV light. BMC Evol. Biol.?2003, 3, 12:1–12:7.
[101]
Shemesh, D.; Hattig, C.; Domcke, W. Photophysics of the Trp-Gly dipeptide: Role of electron and proton transfer processes for efficient excited-state deactivation. Chem. Phys. Lett.?2009, 482, 38–43, doi:10.1016/j.cplett.2009.09.087.
[102]
Marazzi, M.; Sancho, U.; Casta?o, O.; Frutos, L.M. First principles study of photostability within hydrogen-bonded amino acids. Phys. Chem. Chem. Phys.?2011, 13, 7805–7811.
[103]
Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA?2002, 99, 5355–5360.
[104]
Zhang, S. Plausible lipid-like peptides: Prebiotic molecular self-assembly in water. In Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning; Barrow, J.D., Morris, S.C., Freeland, S.J., Harper, C.L., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 440–455.
[105]
Cavalli, S.; Albericio, F.; Kros, A. Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chem. Soc. Rev.?2010, 39, 241–263.
[106]
Oparin, A.I. Genesis and Evolutionary Development of Life; Academic Press: New York, NY, USA, 1968.
[107]
Folsome, C.E. Synthetic organic microstructures and the origins of cellular life. Naturwissenschaften?1976, 63, 303–306, doi:10.1007/BF00597304.
[108]
Grote, M. Jeewanu, or the ‘particles of life’. The approach of Krishna Bahadur in 20th century origin of life research. J. Biosci.?2011, 36, 563–570, doi:10.1007/s12038-011-9087-0.
[109]
Watson, J.D.; Milner-White, E.J. A novel main-chain anion-binding site in proteins: The nest. A particular combination of φ,ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol.?2002, 315, 171–182, doi:10.1006/jmbi.2001.5227.
[110]
Milner-White, E.J.; Russell, M.J. Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig. Life. Evol. Biosph.?2005, 35, 19–27, doi:10.1007/s11084-005-4582-7.
[111]
Milner-White, E.J. The relevance of peptides that bind FeS clusters, phosphate groups, cations or anions for prebiotic evolution. In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 155–166.
[112]
Milner-White, E.J.; Russell, M.J. The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurence in cation and anion-binding regions of proteins. J. Mol. Biol.?2002, 315, 183–191, doi:10.1006/jmbi.2001.5228.
[113]
Torrance, G.M.; Leader, D.P.; Gilbert, D.R.; Milner-White, E.J. A novel main chain motif in proteins bridged by cationic groups: the niche. J. Mol. Biol.?2009, 385, 1076–1086, doi:10.1016/j.jmb.2008.11.007.
[114]
Kritsky, M.; Telegina, T. Role of nucleotide-like coenzymes in primitive evolution. In Origins: Genesis, Evolution and Diversity of Life; Cellular Origin, Life in Extreme Habitats and Astrobiology (COLE); Seckbach, J., Ed.; Springer: Dordrecht, Netherlands, 2004; Volume 6, pp. 215–231.
[115]
Raffaelli, N. Nicotinamide coenzyme synthesis: A case of ribonucleotide emergence or a byproduct of the RNA world? In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 185–208.
[116]
Kritsky, M.S.; Kolesnikov, M.P.; Telegina, T.A. Modeling of abiogenic synthesis of ATP. Dokl. Biochem. Biophys.?2007, 417, 313–315, doi:10.1134/S1607672907060063.
[117]
Gordon, K.H. Were RNA replication and translation directly coupled in the RNA (+ protein?) world? J. Theor. Biol.?1995, 173, 179–193, doi:10.1006/jtbi.1995.0054.
[118]
Poole, A.M.; Jeffares, D.C.; Penny, D. The path from the RNA world. J. Mol. Evol.?1998, 46, 1–17, doi:10.1007/PL00006275.
[119]
Poole, A.M.; Jeffares, D.C.; Penny, D. Prokaryotes, the new kids on the block. BioEssays?1999, 21, 880–889, doi:10.1002/(SICI)1521-1878(199910)21:10<880::AID-BIES11>3.0.CO;2-P.
[120]
Noller, H.F. Evolution of protein synthesis from an RNA world. Cold Spring Harb. Persp. Biol.?2010, 2, a003681:1–a003681:14.
[121]
Freeland, S.J.; Knight, R.D.; Landweber, L.F.; Hurst, L.D. Early fixation of an optimal genetic code. Mol. Biol. Evol.?2000, 17, 511–518, doi:10.1093/oxfordjournals.molbev.a026331.
[122]
Itzkovitz, S.; Alon, U. The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res.?2007, 17, 405–412, doi:10.1101/gr.5987307.
[123]
Butler, T.; Goldenfeld, N.; Mathew, D.; Luthey-Schulten, Z. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Phys. Rev. E?2009, 79, 060901:1–060901:4.
[124]
Vetsigian, K.; Woese, C.R.; Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA?2006, 103, 10696–10701.
[125]
Woese, C. The universal ancestor. Proc. Natl. Acad. Sci. USA?1998, 95, 6854–6859, doi:10.1073/pnas.95.12.6854.
[126]
Forterre, P. The two ages of the RNA world, and the transition to the DNA world: A story of viruses and cells. Biochimie?2005, 87, 793–803, doi:10.1016/j.biochi.2005.03.015.
[127]
Bresch, C.; Niesert, U.; Harnasch, D. Hypercycles, parasites and packages. J. Theor. Biol.?1980, 85, 399–405, doi:10.1016/0022-5193(80)90314-8.
[128]
Niesert, U.; Harnasch, D.; Bresch, C. Origin of life between Scylla and Charybdis. J. Mol. Evol.?1981, 17, 348–353, doi:10.1007/BF01734356.
[129]
Fox, S.W.; Dose, K. Molecular Evolution and the Origin of Life; Freeman: San Francisco, CA, USA, 1972.
[130]
Niesert, U. How many genes to start with? A computer simulation about the origin of life. Orig. Life?1987, 17, 155–169, doi:10.1007/BF01808243.
[131]
Orgel, L.E. Evolution of the genetic apparatus. J. Mol. Biol.?1968, 38, 381–393, doi:10.1016/0022-2836(68)90393-8.
[132]
Orgel, L.E. The origin of polynucleotide-directed protein synthesis. J. Mol. Evol.?1989, 29, 465–474, doi:10.1007/BF02602917.
[133]
Davidovich, C.; Belousoff, M.; Bashan, A.; Yonath, A. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res. Microbiol.?2009, 160, 487–492, doi:10.1016/j.resmic.2009.07.004.
[134]
Belousoff, M.J.; Davidovich, C.; Zimmerman, E.; Caspi, Y.; Wekselman, I.; Rozenszajn, L.; Shapira, T.; Sade-Falk, O.; Taha, L.; Bashan, A.; et al. Ancient machinery embedded in the contemporary ribosome. Biochem. Soc. Trans.?2010, 38, 422–427, doi:10.1042/BST0380422.
[135]
Weinger, J.S.; Parnell, K.M.; Dorner, S.; Green, R.; Strobel, S.A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol.?2004, 11, 1101–1106, doi:10.1038/nsmb841.
[136]
Steitz, T.A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol.?2008, 9, 242–253, doi:10.1038/nrm2352.
[137]
Harish, A.; Caetano-Anollés, G. Ribosomal history reveals origins of modern protein synthesis. PLoS One?2012, 7, e32776:1–e32776:17.
[138]
Bernhardt, H.S.; Tate, W.P. The transition from noncoded to coded protein synthesis: Did coding mRNAs arise from stability-enhancing binding partners to tRNA? Biol. Direct?2010, 5, 16–1.
[139]
Delarue, M. Partition of aminoacyl-tRNA synthetases in two different structural classes dating back to early metabolism: implications for the origin of the genetic code and the nature of protein sequences. J. Mol. Evol.?1995, 41, 703–711.
[140]
Giegé, R.; Sissler, M.; Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucl. Acids Res.?1998, 26, 5017–5035, doi:10.1093/nar/26.22.5017.
[141]
Woese, C.R. Evolution of the genetic code. Proc. Natl. Acad. Sci. USA?1973, 54, 1546–1552, doi:10.1073/pnas.54.6.1546.
[142]
Wong, J.T.-F. Evolution of the genetic code. Microbiol. Sci.?1988, 5, 164–181.
[143]
Davis, B.K. Evolution of the genetic code. Progr. Biophys. Mol. Biol.?1999, 72, 157–243, doi:10.1016/S0079-6107(99)00006-1.
[144]
Koonin, E.V.; Novozhilov, A.S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life?2009, 61, 99–111, doi:10.1002/iub.146.
[145]
de Duve, C. Selection by differential molecular survival: A possible mechanism of early chemical evolution. Proc. Natl. Acad. Sci. USA?1987, 84, 8253–8256, doi:10.1073/pnas.84.23.8253.
[146]
Kauffman, S.A. Approaches to the origin of life on Earth. Life?2011, 1, 34–48, doi:10.3390/life1010034.
[147]
Eigen, M.; Lindemann, B.; Winkler-Oswatitsch, R.; Clarke, C.H. Pattern analysis of 5S rRNA. Proc. Natl. Acad. Sci. USA?1985, 82, 2437–2441, doi:10.1073/pnas.82.8.2437.
[148]
Lankenau, D.H. Two RNA worlds: toward the origin of replication, genes, recombination, and repair. In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 225–286.
[149]
Betat, H.; Rammelt, C.; M?rl, M. tRNA nucleotidyltransferases: Ancient catalysts with an unusual mechanism of polymerization. Cell Mol. Life Sci.?2010, 67, 1447–1463, doi:10.1007/s00018-010-0271-4.
[150]
Abel, D.L. The capabilities of chaos and complexity. Int. J. Mol. Sci.?2009, 10, 247–291, doi:10.3390/ijms10010247.
[151]
Abel, D.L. Is life unique? Life?2012, 2, 106–134, doi:10.3390/life2010106.
[152]
Akhmediev, N.; Pelinovsky, E. Discussion and debate: Rogue waves—Towards a unifying concept? Eur. Phys. J. Spec. Top.?2010, 185, 1–266, doi:10.1140/epjst/e2010-01233-0.
[153]
Ruban, V.P. Enhanced rise of rogue waves in slant wave groups. JETP Lett.?2011, 94, 177–181, doi:10.1134/S0021364011150100.
[154]
Morowitz, H.J.; Kostelnik, J.D.; Yang, J.; Cody, G.D. The origin of intermediary metabolism. Proc. Natl. Acad. Sci. USA?2000, 97, 7704–7708, doi:10.1073/pnas.110153997.
[155]
Anet, F.A.L. The place of metabolism in the origin of life. Curr. Opin. Chem. Biol.?2004, 8, 654–659, doi:10.1016/j.cbpa.2004.10.005.
[156]
Peretó, J. Controversies on the origin of life. Int. Microbiol.?2005, 8, 23–31.
[157]
Fry, I. The role of natural selection in the origin of life. Orig. Life Evol. Biosph.?2011, 41, 3–16, doi:10.1007/s11084-010-9214-1.
[158]
Coppola, Sofia “Lost in Translation”—a refreshingly delightful American movie (2003), playing on the brink of enchanting bewilderment between partly incongruent traditions of different cultures and languages.
[159]
Eschenmoser, A. Question 1: Commentary referring to the statement “The origin of life can be traced back to the origin of kinetic control” and the Question “Do you agree with this statement; and how would you envisage the prebiotic evolutionary bridge between thermodynamic and kinetic control?” stated in Section 1.1. Orig. Life Evol. Biosph.?2007, 37, 309–314, doi:10.1007/s11084-007-9102-5.
[160]
Pascal, R. Suitable energetic conditions for dynamic chemical complexity and the living state. J. Syst. Chem.?2012, 3, doi:10.1186/1759-2208-3-3.
[161]
Lane, N.; Allen, J.F.; Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays?2010, 32, 271–280, doi:10.1002/bies.200900131.
[162]
Qian, H.; Shi, P.Z.; Xing, J. Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity. Phys. Chem. Chem. Phys.?2009, 11, 4861–4870.
[163]
Noble, D. The Music of Life—Biology Beyond the Genome; Oxford University Press: Oxford, UK, 2006.