This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution—leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other.
References
[1]
Follmann, H.; Brownson, C. Darwin's warm little pond revisited: from molecules to the origin of life. Naturwissenschaften?2009, 96, 1265–1292, doi:10.1007/s00114-009-0602-1.
[2]
Peretó, J. Controversies on the origin of life. Int. Microbiol.?2005, 8, 23–31.
[3]
Pascal, R.; Boiteau, L.; Forterre, P.; Gargaud, M.; Lazcano, A.; Lopez-Garcia, P.; Maurel, M.C.; Moreira, D.; Peretó, J.; Prieur, D.; Reisse, J. Prebiotic chemistry-biochemistry-emergence of life (4.4-2 Ga). Earth Moon Planets?2006, 98, 153–203, doi:10.1007/s11038-006-9089-3.
[4]
Egel, R. Integrative perspectives: In quest of a coherent framework for origins of life on earth. In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.-H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 289–360.
[5]
Mulkidjanian, A.Y. Origin of life in the Zinc World: 1. Photosynthetic, porous edifices built of hydrothermally precipitated zinc sulfide (ZnS) as cradles of life on Earth. Biol. Direct?2009, 4, 26–39, doi:10.1186/1745-6150-4-26.
[6]
Mulkidjanian, A.Y.; Galperin, M.Y. On the origin of life in the Zinc World: 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol. Direct?2009, 4, 27–37, doi:10.1186/1745-6150-4-27.
[7]
Zhang, X.V.; Ellery, S.P.; Friend, C.M.; Holland, H.D.; Michel, F.M.; Schoonen, M.A.A.; Martin, S.T. Photodriven reduction and oxidation reactions on colloidal semiconductor particles: Implications for prebiotic synthesis. J. Photochem. Photobiol. A Chem.?2007, 185, 301–311, doi:10.1016/j.jphotochem.2006.06.025.
[8]
Guzman, M.I.; Martin, S.T. Oxaloacetate-to-malate conversion by mineral photoelectrochemistry: Implications for the viability of the reductive tricarboxylic acid cycle in prebiotic chemistry. Int. J. Astrobiol.?2008, 7, 271–278, doi:10.1017/S1473550408004291.
[9]
Guzman, M.I.; Martin, S.T. Prebiotic metabolism: Production by mineral photoelectrochemistry of alpha-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology?2009, 9, 833–842, doi:10.1089/ast.2009.0356.
[10]
Guzman, M.I.; Martin, S.T. Photo-production of lactate from glyoxylate: How minerals can facilitate energy storage in a prebiotic world. Chem. Commun.?2010, 46, 2265–2267, doi:10.1039/b924179e.
[11]
Morowitz, H.J.; Kostelnik, J.D.; Yang, J.; Cody, G.D. The origin of intermediary metabolism. Proc. Natl. Acad. Sci. U. S. A.?2000, 97, 7704–7708.
[12]
Smith, E.; Morowitz, H.J. Universality in intermediary metabolism. Proc. Natl. Acad. Sci. U. S. A.?2004, 101, 13168–13173, doi:10.1073/pnas.0404922101.
[13]
Morowitz, H.J.; Smith, E. Energy flow and the organization of life. Complexity?2007, 13, 51–59, doi:10.1002/cplx.20191.
[14]
Shapiro, R. Small molecule interactions were central to the origin of life. Q. Rev. Biol.?2006, 81, 105–125, doi:10.1086/506024.
[15]
Shapiro, R. A simpler origin for life. Scient. Amer.?2007, 296, 46–53, doi:10.1038/scientificamerican0607-46.
[16]
Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. BioEssays?2006, 28, 399–412, doi:10.1002/bies.20389.
[17]
Kurakin, A. The self-organizing fractal theory as a universal discovery method: the phenomenon of life. Theor. Biol. Med. Model.?2011, 8, 4:1–4:66.
[18]
Haldane, J.B.S. The origin of life. The Rationalist Annual?1929. -Reproduced in: Haldane, J.B.S. Science and Life: Essays of a Rationalist; Pemberton Publishing in association with Barrie & Rockliff: London, UK, 1968; pp. 1–11.
[19]
Russell, M.J.; Hall, A.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond.?1997, 154, 377–402, doi:10.1144/gsjgs.154.3.0377.
[20]
Martin, W.; Russell, M.J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos. Trans. R. Soc. Lond., B, Biol. Sci.?2003, 358, 59–85, doi:10.1098/rstb.2002.1183.
[21]
Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol.?2008, 6, 805–814.
[22]
Koonin, E.V. On the origin of cells and viruses: primordial virus world scenario. Ann. N.Y. Acad. Sci.?1178, 47–64.
[23]
Blair, N.E.; Bonner, W.A. A model for the enantiomeric enrichment of polypeptides on the primitive earth. Orig. Life Evol. Biosph.?1981, 11, 331–335, doi:10.1007/BF00931487.
[24]
Cheng, C.M.; Fan, C.; Wan, R.; Tong, C.Y.; Miao, Z.W.; Chen, J.; Zhao, Y.F. Phosphorylation of adenosine with trimetaphosphate under simulated prebiotic conditions. Orig. Life. Evol. Biosph.?2002, 32, 219–224, doi:10.1023/A:1016513114799.
[25]
Commeyras, A.; Collet, H.; Boiteau, L.; Taillades, J.; Vandenabeele-Trambouze, O.; Cottet, H.; Biron, J.-P.; Plasson, R.; Mion, L.; Lagrille, O.; et al. Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polym. Int.?2002, 51, 661–665.
[26]
Lathe, R. Fast tidal cycling and the origin of life. Icarus?2004, 168, 18–22, doi:10.1016/j.icarus.2003.10.018.
[27]
Bywater, R.P.; Conde-Frieboes, K. Did life begin on the beach? Astrobiology?2005, 5, 568–574, doi:10.1089/ast.2005.5.568.
[28]
Plankensteiner, K.; Reiner, H.; Rode, B.M. Prebiotic chemistry: The amino acid and peptide world. Curr. Org. Chem.?2005, 9, 1107–1114, doi:10.2174/1385272054553640.
[29]
Brack, A. From interstellar amino acids to prebiotic catalytic peptides: A review. Chem. Biodiv.?2007, 4, 665–679, doi:10.1002/cbdv.200790057.
[30]
Deamer, D.; Weber, A.L. Bioenergetics and life's origins. Cold Spring Harb. Perspect. Biol.?2010, 2, a004929:1–a004929:16.
[31]
Trinks, H.; Schr?der, W.; Biebricher, C.K. Ice and the origin of life. Orig. Life Evol. Biosph.?2005, 35, 429–445, doi:10.1007/s11084-005-5009-1.
[32]
Price, P.B. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol. Ecol.?2007, 59, 217–231, doi:10.1111/j.1574-6941.2006.00234.x.
[33]
Gilbert, W. Origin of life: The RNA world. Nature?1986, 319, 618, doi:10.1038/319618a0.
[34]
The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World; Gesteland, R.F., Cech, T.R., Atkins, J.F., Eds.; Cold Spring Harbor Lab Press: Cold Spring Harbor, NY, USA, 2006.
[35]
Robertson, M.P.; Joyce, G.F. The origins of the RNA World. Cold Spring Harb. Perspect. Biol.?2010, 2, a003608:1–a003608:22.
[36]
Lankenau, D.-H. Two RNA Worlds: toward the origin of replication, genes, recombination, and repair. In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.-H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 225–286.
[37]
Kurland, C.G. The RNA dreamtime. BioEssays?2010, 32, 866–871, doi:10.1002/bies.201000058.
[38]
Moulton, V.; Gardner, P.; Pointon, R.; Creamer, L.; Jameson, G.; Penny, D. RNA folding argues against a hot-start origin of life. J. Mol. Evol.?2000, 51, 416–421.
[39]
Kritsky, M.; Telegina, T. Role of nucleotide-like coenzymes in primitive evolution. In Origins: Cellular Origin, Life in Extreme Habitats and Astrobiology; Seckbach, J., Ed.; Kluver Academic Publishers: Dordrecht, NL, 2005; pp. 215–231.
[40]
Sharov, A.A. Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. Int J. Mol. Sci.?2009, 10, 1838–1852, doi:10.3390/ijms10041838.
[41]
Raffaelli, N. Nicotinamide coenzyme synthesis: A case of ribonucleotide emergence or a byproduct of the RNA world? In Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.-H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011; pp. 185–208.
[42]
Rode, B.M. Peptides and the origin of life. Peptides?1999, 20, 773–786, doi:10.1016/S0196-9781(99)00062-5.
[43]
Milner-White, E.J.; Russell, M.J. Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig. Life Evol. Biosph.?2005, 35, 19–27, doi:10.1007/s11084-005-4582-7.
[44]
van der Gulik, P.; Massar, S.; Gilis, D.; Buhrman, H.; Rooman, M. The first peptides: The evolutionary transition between prebiotic amino acids and early proteins. J. Theor. Biol.?2009, 261, 531–539, doi:10.1016/j.jtbi.2009.09.004.
[45]
Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. U. S. A.?2002, 99, 5355–5360, doi:10.1073/pnas.072089599.
[46]
Fishkis, M. Steps towards the formation of a protocell: the possible role of short peptides. Orig. Life Evol. Biosph.?2007, 37, 537–553, doi:10.1007/s11084-007-9111-4.
[47]
Zhang, S. Plausible lipid-like peptides: prebiotic molecular self-assembly in water. In Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning; Barrow, J.D., Morris, S.C., Freeland, S.J., Harper, C.L., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 440–455.
[48]
Egel, R. Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. BioEssays?2009, 31, 1100–1109, doi:10.1002/bies.200800226.
[49]
Fishkis, M. Emergence of self-reproduction in cooperative chemical evolution of prebiological molecules. Orig. Life Evol. Biosph.?2011, 41, 261–275, doi:10.1007/s11084-010-9220-3.
[50]
Dyson, F.J. A model for the origin of life. J. Mol. Evol.?1982, 18, 344–350, doi:10.1007/BF01733901.
[51]
Kauffman, S.A. The Origins of Order; Oxford University Press: Oxford, UK, 1993.
[52]
Hordijk, W.; Kauffman, S.A.; Steel, M. Required levels of catalysis for emergence of autocatalytic sets in models of chemical reaction systems. Int. J. Mol. Sci.?2011, 12, 3085–3101, doi:10.3390/ijms12053085.
[53]
de Duve, C. Selection by differential molecular survival: A possible mechanism of early chemical evolution. Proc. Natl. Acad. Sci. U. S. A.?1987, 84, 8253–8256, doi:10.1073/pnas.84.23.8253.
[54]
Davidovich, C.; Belousoff, M.; Bashan, A.; Yonath, A. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery. Res. Microbiol.?2009, 160, 487–492, doi:10.1016/j.resmic.2009.07.004.
[55]
Belousoff, M.J.; Davidovich, C.; Zimmerman, E.; Caspi, Y.; Wekselman, I.; Rozenszajn, L.; Shapira, T.; Sade-Falk, O.; Taha, L.; Bashan, A.; et al. Ancient machinery embedded in the contemporary ribosome. Biochem. Soc. Trans.?2010, 38, 422–427, doi:10.1042/BST0380422.
[56]
Weinger, J.S.; Parnell, K.M.; Dorner, S.; Green, R.; Strobel, S.A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol.?2004, 11, 1101–1106, doi:10.1038/nsmb841.
[57]
Steitz, T.A. A structural understanding of the dynamic ribosome machine. Nat. Rev. Mol. Cell Biol.?2008, 9, 242–253, doi:10.1038/nrm2352.
[58]
Woese, C. Molecular mechanics of translation: A reciprocating ratchet mechanism. Nature?1970, 226, 817–820, doi:10.1038/226817a0.
[59]
Zhang, W.; Dunkle, J.A.; Cate, J.H.D. Structures of the ribosome in intermediate states of ratcheting. Science?2009, 325, 1014–1017, doi:10.1126/science.1175275.
[60]
Schmeing, T.M.; Huang, K.S.; Strobel, S.A.; Steitz, T.A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature?2005, 438, 520–524, doi:10.1038/nature04152.
[61]
Agmon, I.; Bashan, A.; Zarivach, R.; Yonath, A. Symmetry at the active site of the ribosome: structural and functional implications. Biol. Chem.?2005, 386, 833–844, doi:10.1515/BC.2005.098.
[62]
Luisi, P.L.; Walde, P.; Oberholzer, T. Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci.?1999, 4, 33–39, doi:10.1016/S1359-0294(99)00012-6.
[63]
Segré, D.; Ben-Eli, D.; Deamer, D.W.; Lancet, D. The Lipid World. Orig. Life Evol. Biosph.?2001, 31, 119–145, doi:10.1023/A:1006746807104.
[64]
Budin, I.; Szostak, J.W. Expanding roles for diverse physical phenomena during the origin of life. Annu. Rev. Biophys.?2010, 39, 245–263, doi:10.1146/annurev.biophys.050708.133753.
[65]
Koch, A.L.; Silver, S. The first cell. Adv. Microb. Physiol.?2005, 50, 227–259, doi:10.1016/S0065-2911(05)50006-7.
[66]
Cairns-Smith, A.G. Genetic Takeover and the Mineral Origins of Life; Cambridge University Press: Cambridge, UK, 1982.
[67]
Baaske, P.; Weinert, F.M.; Duhr, S.; Lemke, K.H.; Russell, M.J.; Braun, D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc. Natl. Acad. Sci. U. S. A.?2007, 104, 9346–9351.
[68]
Branciamore, S.; Gallori, E.; Szathmary, E.; Czaran, T. The origin of life: Chemical evolution of a metabolic system in a mineral honeycomb? J. Mol. Evol.?2009, 69, 458–469, doi:10.1007/s00239-009-9278-6.
[69]
Hansma, H.G. Possible origin of life between mica sheets. J. Theor. Biol.?2010, 266, 175–188, doi:10.1016/j.jtbi.2010.06.016.
[70]
Maynard Smith, J.; Szathmáry, E. The Major Transitions in Evolution; Freeman: Oxford, UK, 1995.
[71]
Trevors, J.T.; Pollack, G.H. Hypothesis: The origin of life in a hydrogel environment. Prog. Biophys. Mol. Biol.?2005, 89, 1–8, doi:10.1016/j.pbiomolbio.2004.07.003.
[72]
Spitzer, J.; Poolman, B. The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol. Mol. Biol. Rev.?2009, 73, 371–388, doi:10.1128/MMBR.00010-09.
[73]
Trevors, J.T. Hypothesized origin of microbial life in a prebiotic gel and the transition to a living biofilm and microbial mats. C. R. Biologies?2011, 334, 269–272, doi:10.1016/j.crvi.2011.02.010.
[74]
Pollack, G.H.; Figueroa, X.; Zhao, Q. The minimal cell and life’s origin: Role of water and aqueous interfaces. In The Minimal Cell: The Biophysics of Cell Compartment and the Origin of Cell Functionality; Luisi, P.L., Stano, P., Eds.; Springer: Dordrecht, The Netherlands, 2011.
[75]
Griffiths, G. Cell evolution and the problem of membrane topology. Nat. Rev. Mol. Cell Biol.?2007, 8, 1018–1024, doi:10.1038/nrm2287.
[76]
Sobolewski, A.L.; Domcke, W. On the mechanism of rapid non-radiative decay in intramolecularly hydrogen-bonded π systems. Chem. Phys. Lett.?1999, 300, 533–539, doi:10.1016/S0009-2614(98)01433-X.
[77]
Sobolewski, A.L.; Domcke, W. The chemical physics of the photostability of life. Europhys. News?2006, 37, 20–23, doi:10.1051/epn:2006405.
[78]
Shemesh, D.; Hattig, C.; Domcke, W. Photophysics of the Trp-Gly dipeptide: Role of electron and proton transfer processes for efficient excited-state deactivation. Chem. Phys. Lett.?2009, 482, 38–43, doi:10.1016/j.cplett.2009.09.087.
[79]
Mulkidjanian, A.Y.; Cherepanov, D.A.; Galperin, M.Y. Survival of the fittest before the beginning of life: Selection of the first oligonucleotide-like polymers by UV light. BMC Evol. Biol.?2003, 3, 12:1–12:7.
[80]
Brack, A.; Barbier, B. Chemical activity of simple basic peptides. Orig. Life. Evol. Biosph.?1990, 20, 139–144, doi:10.1007/BF01808274.
Mulkidjanian, A.Y.; Galperin, M.Y. Evolutionary origins of membrane proteins. In Structural Bioinformatics of Membrane Proteins; Frishman, D., Ed.; Springer: Wien, Austria, 2010; pp. 1–28.
[84]
Takagi, M.; Goto, S.; Matsuda, T. Photo-reaction of lipoic acid and related organic disulphides: reductive acylation with aldehydes. J. Chem. Soc. Chem. Commun.?1976, 92–93.
[85]
Weber, A.L. Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N,N'- diacetylcystine in aqueous solution with ultraviolet light. J. Mol. Evol.?1981, 17, 103–107, doi:10.1007/BF01732680.
[86]
Di Sabato, G.; Jencks, W.P. Mechanism and catalysis of acyl phosphates II. Hydrolysis. J. Am. Chem. Soc.?1961, 83, 4400–4405, doi:10.1021/ja01482a025.
[87]
Weber, A.L. Formation of pyrophosphate, tripolyphosphate, and phosphorylimidazole with the thioester, N,S-diacetylcysteamine, as the condensing agent. J. Mol. Evol.?1981, 18, 24–29, doi:10.1007/BF01733208.
[88]
Weber, A.L. Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents. BioSystems?1982, 15, 183–189.
[89]
W?chtersh?user, G. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. U. S. A.?1990, 87, 200–204, doi:10.1073/pnas.87.1.200.
[90]
de Duve, C. Clues from present-day biology: the thioester world. In The Molecular Origins of Life; Brack, A., Ed.; Cambridge Univ Press: Cambridge, UK, 1998; pp. 219–236.
[91]
Maheen, G.; Tian, G.; Wang, Y.; He, C.; Shi, Z.; Yuan, H.; Feng, S. Resolving the enigma of prebiotic C-O-P bond formation: Prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroatom Chem.?2010, 21, 161–167.
[92]
Maheen, G.; Wang, Y.; Wang, Y.; Shi, Z.; Tian, G.; Feng, S. Mimicking the prebiotic acidic hydrothermal environment: One-pot prebiotic hydrothermal synthesis of glucose phosphates. Heteroatom Chem.?2011, 22, 186–191, doi:10.1002/hc.20675.
[93]
Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature?2009, 459, 239–242, doi:10.1038/nature08013.
[94]
Szostak, J.W. Origins of life: systems chemistry on early Earth. Nature?2009, 459, 171–172, doi:10.1038/459171a.
[95]
Hagan, W.J., Jr. Uracil-catalyzed synthesis of acetyl phosphate: a photochemical driver for protometabolism. ChemBioChem?2010, 11, 383–387, doi:10.1002/cbic.200900433.
[96]
Conrad, M. The geometry of evolution. BioSystems?1990, 24, 61–81, doi:10.1016/0303-2647(90)90030-5.
[97]
Woese, C.R. Evolution of the genetic code. Proc. Natl. Acad. Sci. U. S. A.?1973, 54, 1546–1552, doi:10.1073/pnas.54.6.1546.
[98]
Wong, J.T.-F. Evolution of the genetic code. Microbiol. Sci.?1988, 5, 164–181.
[99]
Davis, B.K. Evolution of the genetic code. Progr. Biophys. Mol. Biol.?1999, 72, 157–243, doi:10.1016/S0079-6107(99)00006-1.
[100]
Koonin, E.V.; Novozhilov, A.S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life?2009, 61, 99–111, doi:10.1002/iub.146.
[101]
Rodin, A.S.; Szathmáry, E.; Rodin, S.N. One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. Biol. Direct?2009, 4, 4–1.
[102]
Johnson, D.B.F.; Wang, L. Imprints of the genetic code in the ribosome. Proc. Natl. Acad. Sci.U. S. A.?2010, 107, 8298–8303, doi:10.1073/pnas.1000704107.
[103]
Freeland, S.J.; Knight, R.D.; Landweber, L.F.; Hurst, L.D. Early fixation of an optimal genetic code. Mol. Biol. Evol.?2000, 17, 511–518, doi:10.1093/oxfordjournals.molbev.a026331.
[104]
Itzkovitz, S.; Alon, U. The genetic code is nearly optimal for allowing additional information within protein-coding sequences. Genome Res.?2007, 17, 405–412, doi:10.1101/gr.5987307.
[105]
Butler, T.; Goldenfeld, N.; Mathew, D.; Luthey-Schulten, Z. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Phys. Rev. E?2009, 79, 060901:1–060901:4.
[106]
Vetsigian, K.; Woese, C.R.; Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl. Acad. Sci. U. S. A.?2006, 103, 10696–10701, doi:10.1073/pnas.0603780103.
[107]
Woese, C. The universal ancestor. Proc. Natl. Acad. Sci. U. S. A.?1998, 95, 6854–6859, doi:10.1073/pnas.95.12.6854.
[108]
Calabretta, R.; Nolfi, S.; Parisi, D.; Wagner, P. A case study of the evolution of modularity: towards a bridge between evolutionary biology, artificial life, neuro- and cognitive science. In Artificial Life VI: Proceedings of the Sixth International Conference on Artificial Life; Adami, C., Belew, R.K., Kitano, H., Taylor, C.E., Eds.; MIT Press: Cambridge, MA, USA, 1998; pp. 275–284.
[109]
Dauscher, P.; Uthmann, T. Self-organized modularization in evolutionary algorithms. Evolut. Comput.?2005, 13, 303–328, doi:10.1162/1063656054794761.
[110]
Polani, D.; Dauscher, P.; Uthmann, T. On a quantitative measure for modularity based on information theory. In Advances in Artificial Life. ECAL 2005; Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J., Eds.; Springer-Verlag: Heidelberg, Germany, 2005; pp. 393–402.
[111]
Schimmel, P. Origin of genetic code: A needle in the haystack of tRNA sequences. Proc. Natl. Acad. Sci. U. S. A.?1996, 93, 4521–4522, doi:10.1073/pnas.93.10.4521.
[112]
Rodin, A.S.; Szathmáry, E.; Rodin, S.N. On origin of genetic code and tRNA before translation. Biol. Direct?2011, 6, 14–24, doi:10.1186/1745-6150-6-14.
[113]
Modularity: Understanding the Development and Evolution of Natural Complex Systems; Callebaut, W., Rasskin-Gutman, D., Eds.; MIT Press: Cambridge, MA, USA, 2005.
[114]
Pereira-Leal, J.B.; Levy, E.D.; Teichmann, S.A. The origins and evolution of functional modules: lessons from protein complexes. Philos. Trans. R. Soc. Lond., B, Biol. Sci.?2006, 361, 507–517, doi:10.1098/rstb.2005.1807.
[115]
Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm intelligence: From natural to artificial systems; Oxford University Press: Oxford, UK, 1999.
[116]
Chen, H.; Zhu, Y.; Hu, K.; He, X. Hierarchical swarm model: A new approach to optimization. Discrete Dyn. Nat. Soc.?2010, 2010, 379649:1–379649:30.
[117]
Sun, J.; Deem, M. Spontaneous emergence of modularity in a model of evolving individuals. Phys. Rev. Lett.?2007, 99, 228107–1.
[118]
Goldenfeld, N.; Woese, C. Biology's next revolution. Nature?2007, 445, 369, doi:10.1038/445369a.
[119]
Cohen, E.; Kessler, D.A.; Levine, H. Recombination dramatically speeds up evolution of finite populations. Phys. Rev. Lett.?2005, 94, 098102:1–098102:5.
Lehman, N. A case for the extreme antiquity of recombination. J. Mol. Evol.?2003, 56, 770–777, doi:10.1007/s00239-003-2454-1.
[122]
Vogan, A.A.; Higgs, P.G. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biology Direct?2011, 6, 1–14, doi:10.1186/1745-6150-6-1.
[123]
Lehman, N.; Unrau, P.J. Recombination during in vitro evolution. J. Mol. Evol.?2005, 61, 245–252, doi:10.1007/s00239-004-0373-4.
[124]
Lehman, N. A recombination-based model for the origin and early evolution of genetic information. Chem. Biodivers.?2008, 5, 1707–1717, doi:10.1002/cbdv.200890159.
[125]
Lankenau, D.H. The legacy of the germ line-maintaining sex and life in metazoans: Cognitive roots of the concept of hierarchical selection. In Recombination and Meiosis-Models, Means and Evolution; Egel, R., Lankenau, D.H., Eds.; Springer-Verlag: Heidelberg, Germany. Genome Dyn. Stab. 2007, 3, 289-339..
[126]
Fedorov, A.; Fedorova, L. Introns: mighty elements from the RNA world. J. Mol. Evol.?2004, 59, 718–721, doi:10.1007/s00239-004-2660-5.
[127]
Jeffares, D.C.; Poole, A.M.; Penny, D. Relics from the RNA world. J. Mol. Evol.?1998, 46, 18–36, doi:10.1007/PL00006280.
[128]
Penny, D.; Hoeppner, M.P.; Poole, A.M.; Jeffares, D.C. An overview of the introns-first theory. J. Mol. Evol.?2009, 69, 527–540, doi:10.1007/s00239-009-9279-5.
[129]
Kooter, J.M.; de Lange, T.; Borst, P. Discontinuous synthesis of mRNA in trypanosomes. EMBO J.?1984, 3, 2387–2392.
[130]
Günzl, A. The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot. Cell?2010, 9, 1159–1170, doi:10.1128/EC.00113-10.
[131]
Dorit, R.L.; Schoenbacher, L.; Gilbert, W. How big is the universe of exons? Science?1990, 250, 1377–1382.
[132]
Gilbert, W.; de Souza, S.J.; Long, M. Origin of genes. Proc. Natl. Acad. Sci. U. S. A.?1997, 94, 7698–7703.
[133]
Patthy, L. Genome evolution and the evolution of exon-shuffling-a review. Gene?1999, 238, 103–114, doi:10.1016/S0378-1119(99)00228-0.
[134]
Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat. Rev. Genet.?2006, 7, 211–221.
[135]
Siefert, J.L.; Martin, K.A.; Abdi, F.; Widger, WR.; Fox, G.E. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J. Mol. Evol.?1997, 45, 467–472, doi:10.1007/PL00006251.
[136]
Dandekar, T.; Snel, B.; Huynen, M.; Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci.?1998, 23, 324–328, doi:10.1016/S0968-0004(98)01274-2.
[137]
Glansdorff, N. On the origin of operons and their possible role in evolution toward thermophily. J. Mol. Evol.?1999, 49, 432–438, doi:10.1007/PL00006566.
[138]
Fondi, M.; Emiliani, G.; Fani, R. Origin and evolution of operons and metabolic pathways. Res. Microbiol.?2009, 160, 502–512, doi:10.1016/j.resmic.2009.05.001.
[139]
Emiliani, G.; Fondi, M.; Liò, P.; Fani, R. Evolution of metabolic pathways and evolution of genomes. In Geomicrobiology, Molecular and Environmental Perspective.; Barton, L.L., Mandl, M., Loy, A., Eds.; Springer: Dordrecht, NL, 2010; pp. 37–68.
[140]
M?ller-Jensen, J.; Jensen, R.B.; Gerdes, K. Plasmid and chromosome segregation in prokaryotes. Trends Microbiol.?2000, 8, 313–320, doi:10.1016/S0966-842X(00)01787-X.
[141]
Yanagida, M. Basic mechanism of eukaryotic chromosome segregation. Philos. Trans. R. Soc. Lond., B, Biol. Sci.?2005, 360, 609–621, doi:10.1098/rstb.2004.1615.
[142]
Dye, N.A.; Shapiro, L. The push and pull of the bacterial cytoskeleton. Trends Cell Biol.?2007, 17, 239–245, doi:10.1016/j.tcb.2007.03.005.
[143]
Blackburn, E.H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett.?2005, 579, 859–862, doi:10.1016/j.febslet.2004.11.036.
[144]
Blackburn, E.H.; Collins, K. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb. Perspect. Biol.?2010, 2, a003558:1–a003558:9.
[145]
Khan, S.A. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev.?1997, 61, 442–455.
[146]
Fiore-Donno, A.-M.; Berney, C.; Pawlowski, J.; Baldauf, S.L. Higher-order phylogeny of plasmodial slime molds (Myxogastria) based on elongation factor-1 a and small subunit rRNA gene sequences. J. Eukaryot. Microbiol.?2005, 52, 1–10, doi:10.1111/j.1550-7408.2005.3294rr.x.
[147]
Hoppe, T.; Kutschera, U. In the shadow of Darwin: Anton deBary's origin of myxomycetology and a molecular phylogeny of the plasmodial slime molds. Theory Biosci.?2010, 129, 15–23, doi:10.1007/s12064-009-0079-7.
[148]
Egel, R.; Penny, D. On the origin of meiosis in eukaryotic evolution: Coevolution of meiosis and mitosis from feeble beginnings. In Recombination and Meiosis-Models, Means and Evolution; Egel, R., Lankenau, D.H., Eds.; Springer-Verlag: Heidelberg, Germany. Genome Dyn. Stab. 2007, 3, 249-388..
[149]
Woese, C.R.; Fox, G. The concept of cellular evolution. J. Mol. Evol.?1977, 10, 1–6, doi:10.1007/BF01796132.
[150]
Kandler, O. The early diversification of life. In Early Life on Earth: Nobel Symposium 84; Bengtson, S., Ed.; Columbia University Press: New York, NY, USA, 1994; pp. 152–160.
[151]
Kandler, O. Cell wall biochemistry in Archaea and its phylogenetic implications. J. Biol. Phys.?1994, 20, 165–169, doi:10.1007/BF00700433.
[152]
Kandler, O. Cell wall biochemistry and three-domain concept of life. System. Appl. Microbiol.?1994, 16, 501–509, doi:10.1016/S0723-2020(11)80319-X.
[153]
Moreira, D.; López-García, P. The last common ancestor of modern cells. In Lectures in astrobiology; Gargaud, M., Martin, H., Claeys, P., Eds.; Springer-Verlag: Berlin, Germany, 2007; Volume II. Adv. Astrobiol. Biogeophys. pp. 305-317.
[154]
Blobel, G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. U. S. A.?1980, 77, 1496–1500, doi:10.1073/pnas.77.3.1496.
[155]
Cavalier-Smith, T. Obcells as proto-organisms: Membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J. Mol. Evol.?2001, 53, 555–595, doi:10.1007/s002390010245.
[156]
Collins, O.R.; Haskins, E.F. Genetics of somatic fusion in Physarum polycephalum: the PpII strain. Genetics?1972, 71, 63–71.
[157]
Woldringh, C.L.; Nanninga, N. Structural and physical aspects of bacterial chromosome segregation. J. Struct. Biol.?2006, 156, 273–283, doi:10.1016/j.jsb.2006.04.013.
[158]
Iborra, F.J. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor. Biol. Med. Model.?2007, 12, 4–15.
[159]
Rippe, K. Dynamic organization of the cell nucleus. Curr. Opin. Genet. Dev.?2007, 17, 373–380, doi:10.1016/j.gde.2007.08.007.
[160]
Lake, J.A.; Rivera, M.C. Was the nucleus the first endosymbiont? Proc. Natl. Acad. Sci. U. S. A.?1994, 91, 2880–2881, doi:10.1073/pnas.91.8.2880.
[161]
Güttinger, S.; Laurell, E.; Kutay, U. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol.?2009, 10, 178–191, doi:10.1038/nrm2641.
[162]
de Roos, A.D.G. The origin of the eukaryotic cell based on conservation of existing interfaces. Artif. Life?2006, 12, 513–523, doi:10.1162/artl.2006.12.4.513.
[163]
Martin, W. Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr. Opin. Microbiol.?2005, 8, 630–637, doi:10.1016/j.mib.2005.10.004.
[164]
Sanders, I.R.; Croll, D. Arbuscular mycorrhiza: The challenge to understand the genetics of the fungal partner. Annu. Rev. Genet.?2010, 44, 271–292, doi:10.1146/annurev-genet-102108-134239.
[165]
Jany, J.L.; Pawlowska, T.E. Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. Amer. Naturalist?2010, 175, 424–435, doi:10.1086/650725.
[166]
Koonin, E.; Martin, W. On the origin of genomes and cells within inorganic compartments. Trends Genet.?2005, 21, 647–654, doi:10.1016/j.tig.2005.09.006.
[167]
Lane, N.; Allen, J.F.; Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays?2010, 32, 271–280, doi:10.1002/bies.200900131.
[168]
Fischer, H.M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev.?1994, 58, 352–386.
[169]
Poole, A.M.; Jeffares, D.C.; Penny, D. Prokaryotes, the new kids on the block. BioEssays?1999, 21, 880–889, doi:10.1002/(SICI)1521-1878(199910)21:10<880::AID-BIES11>3.0.CO;2-P.
[170]
Bapteste, E.; O'Malley, M.A.; Beiko, R.G.; Ereshefsky, M.; Gogarten, J.P.; Franklin-Hall, L.; Lapointe, F.J.; Dupré, J.; Dagan, T.; Boucher, Y.; Martin, W. Prokaryotic evolution and the tree of life are two different things. Biol. Direct?2009, 4, 34:1–34:20.
[171]
Cavalier-Smith, T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol. Direct?2010, 5, 7–78, doi:10.1186/1745-6150-5-7.
[172]
Schopf, J.W.; Packer, B.M. Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona group, Australia. Science?1987, 237, 70–73.
[173]
Forterre, P. Thermoreduction, a hypothesis for the origin of prokaryotes. C. R. Acad. Sci. III.?1995, 318, 415–422.
[174]
Embley, M.T.; Martin, W. Eukaryotic evolution, changes and challenges. Nature?2006, 440, 623–630, doi:10.1038/nature04546.
[175]
Martin, W.; Dagan, T.; Koonin, E.V.; Dipippo, J.L.; Gogarten, J.P.; Lake, J.A. The evolution of eukaryotes. Science?2007, 316, 542–543. author reply 543.
[176]
Gribaldo, S.; Poole, A.M.; Daubin, V.; Forterre, P.; Brochier-Armanet, C. The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat. Rev. Microbiol.?2010, 8, 743–752, doi:10.1038/nrmicro2426.
[177]
Dagan, T.; Roettger, M.; Bryant, D.; Martin, W. Genome Networks Root the Tree of Life between Prokaryotic Domains. Genome Biol. Evol.?2010, 2, 379–392, doi:10.1093/gbe/evq025.
[178]
Poole, A.; Penny, D. Eukaryote evolution: engulfed by speculation. Nature?2007, 447, 913, doi:10.1038/447913a.
[179]
Javaux, E.J.; Marshall, C.P.; Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature?2010, 463, 934–938, doi:10.1038/nature08793.
[180]
David, L.A.; Alm, E.J. Rapid evolutionary innovation during an Archaean Genetic Expansion. Nature?2010, 469, 93–96, doi:10.1038/nature09649.
[181]
Fuerst, J.A. Intracellular compartmentation in planctomycetes. Annu. Rev. Microbiol.?2005, 59, 299–328, doi:10.1146/annurev.micro.59.030804.121258.
[182]
Forterre, P.; Gribaldo, S. Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc. Natl. Acad. Sci. U. S. A.?2010, 107, 12739–12740, doi:10.1073/pnas.1007720107.
[183]
McInerney, J.O.; Martin, W.F.; Koonin, E.V.; Allen, J.F.; Galperin, M.Y.; Lane, N.; Archibald, J.M.; Embley, T.M. Planctomycetes and eukaryotes: A case of analogy not homology. BioEssays?2011, 33, 810–817, doi:10.1002/bies.201100045.
[184]
Fuerst, J.A.; Sagulenko, E. Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol.?2011, 9, 403–413, doi:10.1038/nrmicro2578.
[185]
Pace, N.R. Time for a change. Nature?2006, 441, 289, doi:10.1038/441289a.
[186]
Harris, J.K.; Kelley, S.T.; Spiegelman, G.B.; Pace, N.R. The genetic core of the universal ancestor. Genome Res.?2003, 13, 407–412, doi:10.1101/gr.652803.
[187]
Puigbò, P.; Wolf, Y.I.; Koonin, E.V. Search for a 'Tree of Life' in the thicket of the phylogenetic forest. J. Biol.?2009, 8, 59:1–59:17.
[188]
Goldman, A.D.; Samudrala, R.; Baross, J.A. The evolution and functional repertoire of translation proteins following the origin of life. Biol. Direct?2010, 5, 15:1–15:12.
[189]
Dagan, T.; Martin, W. The tree of one percent. Genome Biol.?2006, 7, 118:1–118:7.
[190]
Bapteste, E.; Boucher, Y. Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol.?2008, 16, 200–207, doi:10.1016/j.tim.2008.02.005.
[191]
Puigbò, P.; Wolf, Y.I.; Koonin, E.V. The tree and net components of prokaryote evolution. Genome Biol. Evol.?2010, 2, 745–756, doi:10.1093/gbe/evq062.
[192]
Raoult, D. The post-Darwinist rhizome of life. Lancet?2010, 375, 104–105, doi:10.1016/S0140-6736(09)61958-9.
[193]
Beauregard-Racine, J.; Bicep, C.; Schliep, K.; Lopez, P.; Lapointe, F.J.; Bapteste, E. Of Woods and Webs: Possible alternatives to the tree of life for studying genomic fluidity in E. coli. Biol. Direct?2011, 6, 39:1–39:21.
[194]
Marcet-Houben, M.; Gabaldon, T. Acquisition of prokaryotic genes by fungal genomes. Trends Genet.?2010, 26, 5–8, doi:10.1016/j.tig.2009.11.007.
[195]
Doolittle, W.F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet.?1998, 14, 307–311, doi:10.1016/S0168-9525(98)01494-2.
[196]
Martin, W.; Rujan, T.; Richly, E.; Hansen, A.; Cornelsen, S.; Lins, T.; Leister, D.; Stoebe, B.; Hasegawa, M.; Penny, D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Nat. Acad. Sci. U. S. A.?2002, 99, 12246–12251.
[197]
Dacks, J.; Roger, A.J. The first sexual lineage and the relevance of facultative sex. J. Mol. Evol.?1999, 48, 779–783, doi:10.1007/PL00013156.
[198]
Logsdon, J.M.J. Evolutionary genetics: sex happens in Giardia. Curr. Biol.?2008, 18, R66–68, doi:10.1016/j.cub.2007.11.019.
[199]
Wilkins, A.S.; Holliday, R. The evolution of meiosis from mitosis. Genetics?2009, 181, 3–12, doi:10.1534/genetics.108.099762.
[200]
Carlile, M. Prokaryotes and eukaryotes: strategies and successes. Trends Biochem. Sci.?1982, 7, 128–130, doi:10.1016/0968-0004(82)90199-2.
[201]
Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol.?2002, 52, 297–354.
[202]
Hartman, H.; Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl. Acad. Sci. USA?2002, 99, 1420–1425, doi:10.1073/pnas.032658599.
[203]
Poole, A. Eukaryote evolution: the importance of the stem group. In Evolutionary Genomics and Systems Biology; Caetano-Anollés, G., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 63–80.
[204]
Poole, A.M.; Neumann, N. Reconciling an archaeal origin of eukaryotes with engulfment: A biologically plausible update of the Eocyte hypothesis. Res. Microbiol.?2011, 162, 71–76, doi:10.1016/j.resmic.2010.10.002.
[205]
de Nooijer, S.; Holland, B.R.; Penny, D. The emergence of predators in early life: there was no Garden of Eden. PLoS One?2009, 4, e5507:1–e5507:10.
[206]
Lonhienne, T.G.; Sagulenko, E.; Webb, R.I.; Lee, K.C.; Franke, J.; Devos, D.P.; Nouwens, A.; Carroll, B.J.; Fuerst, J.A. Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc. Natl. Acad. Sci. U. S. A.?2010, 107, 12883–12888.
[207]
Jékely, G. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biol. Direct?2007, 2, 3:1–3:15.
[208]
Gross, J.; Bhattacharya, D. Uniting sex and eukaryote origins in an emerging oxygenic world. Biol. Direct?2010, 5, 53:1–53:20.
[209]
Poole, A.M.; Phillips, M.J.; Penny, D. Prokaryote and eukaryote evolvability. BioSystems?2003, 69, 163–185, doi:10.1016/S0303-2647(02)00131-4.
[210]
Kurland, C.G.; Collins, L.J.; Penny, D. Genomics and the irreducible nature of eukaryote cells. Science?2006, 312, 1011–1014.
[211]
Poole, A.M. Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol. Direct?2006, 1, 36:1–36:6.
[212]
Martin, W.; Koonin, E.V. Introns and the origin of nucleus-cytosol compartmentation. Nature?2006, 440, 41–45, doi:10.1038/nature04531.
[213]
Koonin, E.V. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol.?2010, 11, 209–1.
[214]
Stetter, K.O. The lesson of archaebacteria. In Early Life on Earth: Nobel Symposium 84; Bengtson, S., Ed.; Columbia University Press: New York, NY, USA, 1994; pp. 143–151.
[215]
Stetter, K.O. Hyperthermophiles in the history of life. Phil. Trans. R. Soc. Lond. B?2006, 361, 1837–1843, doi:10.1098/rstb.2006.1907.
[216]
Levy, M.; Miller, S.L. The stability of the RNA bases: implications for the origin of life. Proc. Natl. Acad. Sci. U. S. A.?1998, 95, 7933–7938, doi:10.1073/pnas.95.14.7933.
[217]
Moulton, V.; Gardner, P.P.; Pointon, R.F.; Creamer, L.K.; Jameson, G.B.; Penny, D. RNA folding argues against a hot-start origin of life. J. Mol. Evol.?2000, 51, 416–421.
[218]
Galtier, N.; Tourasse, N.; Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science?1999, 283, 220–221.
[219]
Forterre, P.; Confalonieri, F.; Charbonnier, F.; Duguet, M. Speculations on the origin of life and thermophily: review of available information on reverse gyrase suggests that hyperthermophilic procaryotes are not so primitive. Orig. Life Evol. Biosph.?1995, 25, 235–249, doi:10.1007/BF01581587.
[220]
Forterre, P. A hot topic: the origin of hyperthermophiles. Cell?1996, 85, 789–792, doi:10.1016/S0092-8674(00)81262-3.
[221]
Boussau, B.; Blanquart, S.; Necsulea, A.; Lartillot, N.; Gouy, M. Parallel adaptations to high temperatures in the Archaean eon. Nature?2008, 456, 942–945, doi:10.1038/nature07393.
[222]
Poole, A.M.; Jeffares, D.C.; Penny, D. The path from the RNA world. J. Mol. Evol.?1998, 46, 1–17, doi:10.1007/PL00006275.
[223]
Penny, D.; Poole, A. The nature of the last universal common ancestor. Curr. Opin. Genet. Dev.?1999, 9, 672–677, doi:10.1016/S0959-437X(99)00020-9.
[224]
Poole, A.M.; Penny, D. Evaluating hypotheses for the origin of eukaryotes. BioEssays?2007, 29, 74–84, doi:10.1002/bies.20516.
[225]
Collins, L.; Penny, D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol. Biol. Evol.?2005, 22, 1053–1066, doi:10.1093/molbev/msi091.
[226]
Collins, L.J.; Penny, D. The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet.?2009, 25, 120–128.
[227]
Collins, L.J.; Kurland, C.G.; Biggs, P.; Penny, D. The modern RNP world of eukaryotes. J. Hered.?2009, 100, 597–604, doi:10.1093/jhered/esp064.
[228]
Cech, T.R. The generality of self-splicing RNA: Relationship to nuclear mRNA splicing. Cell?1986, 44, 207–210, doi:10.1016/0092-8674(86)90751-8.
[229]
Copertino, D.W.; Hallick, R.B. Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem. Sci.?1993, 18, 467–471, doi:10.1016/0968-0004(93)90008-B.
[230]
Bonen, L.; Vogel, J. The ins and outs of group II introns. Trends Genet.?2001, 6, 322–331, doi:10.1016/S0168-9525(01)02324-1.
[231]
Wang, M.; Yafremava, L.S.; Caetano-Anollés, D.; Mittenthal, J.E.; Caetano-Anollés, G. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res.?2007, 17, 1572–1585, doi:10.1101/gr.6454307.
[232]
Wang, M.; Caetano-Anollés, G. The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure?2009, 17, 66–78, doi:10.1016/j.str.2008.11.008.
[233]
Makarova, K.S.; Yutin, N.; Bell, S.D.; Koonin, E.V. Evolution of diverse cell division and vesicle formation systems in Archaea. Nat. Rev. Microbiol.?2010, 8, 731–741, doi:10.1038/nrmicro2406.
[234]
Wickstead, B.; Gull, K. The evolution of the cytoskeleton. J. Cell Biol.?2011, 194, 513–525, doi:10.1083/jcb.201102065.
[235]
Roberts, E.; Sethi, A.; Montoya, J.; Woese, C.R.; Luthey-Schulten, Z. Molecular signatures of ribosomal evolution. Proc. Natl. Acad. Sci. U. S. A.?2008, 105, 13953–13958.
[236]
Vishwanath, P.; Favaretto, P.; Hartman, H.; Mohr, F.C.; Smith, T.F. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes. Mol. Phylogenet. Evol.?2004, 33, 615–625, doi:10.1016/j.ympev.2004.07.003.
[237]
Kirschvink, J.L.,; Gaidos, E.J.; Bertani, L.E.; Beukes, N.J.; Gutzmer, J.; Maepa, L.N.; Steinberger, R.E. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. U. S. A.?2000, 97, 1400–1405.
[238]
Bengston, S. Origins and early evolution of predation. In The fossil record of predation; Kowalewski, M., Kelley, P.H., Eds.; The Paleontological Society: Boulder, CO, USA, 2002. (Paleontol. Soc. Papers 8), pp. 289-317.
[239]
Brocks, J.J.; Logan, G.A.; Buick, R.; Summons, R. Archean molecular fossils and the early rise of eukaryotes. Science?1999, 285, 1033–1036, doi:10.1126/science.285.5430.1033.
[240]
George, S.C.; Volk, H.; Dutkiewicz, A.; Ridley, J.; Buick, R. Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for <2 billion years. Geochim. Cosmochim. Acta?2008, 72, 844–870, doi:10.1016/j.gca.2007.11.021.
[241]
Glansdorff, N. About the last common ancestor, the universal lifetree and lateral gene transfer: a reappraisal. Mol. Microbiol.?2000, 38, 177–185, doi:10.1046/j.1365-2958.2000.02126.x.
[242]
Glansdorff, N.; Xu, Y.; Labedan, B. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct?2008, 3, 29–35, doi:10.1186/1745-6150-3-29.
[243]
Glansdorff, N.; Xu, Y.; Labedan, B. The origin of life and the last universal common ancestor: do we need a change of perspective? Res. Microbiol.?2009, 160, 522–528, doi:10.1016/j.resmic.2009.05.003.
[244]
Glansdorff, N.; Xu, Y.; Labedan, B. The conflict between horizontal gene transfer and the safeguard of identity: origin of meiotic sexuality. J. Mol. Evol.?2009, 9, 470–480, doi:10.1007/s00239-009-9277-7.
[245]
Darwin, C. On the origin of species by means of natural selection; Murray: London, UK, 1859.
[246]
Lake, J.A.; Henderson, E.; Oakes, M.; Clark, M.W. Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl. Acad. Sci. U. S. A.?1984, 81, 3786–3790.
[247]
Cox, C.J.; Foster, P.G.; Hirt, R.P.; Harris, S.R.; Embley, T.M. The archaebacterial origin of eukaryotes. Proc Natl Acad Sci U. S. A.?2008, 105, 20356–20361.
[248]
Ouzounis, C.A.; Kunin, V.; Darzentas, N.; Goldovsky, L. A minimal estimate for the gene content of the last universal common ancestor-exobiology from a terrestrial perspective. Res. Microbiol.?2006, 157, 57–68, doi:10.1016/j.resmic.2005.06.015.
[249]
Jékely, G. Did the last common ancestor have a biological membrane? Biol. Direct?2006, 1, 35–1.
[250]
Mulkidjanian, A.Y.; Galperin, M.Y.; Koonin, E.V. Co-evolution of primordial membranes and membrane proteins. Trends Biochem. Sci.?2009, 34, 206–215, doi:10.1016/j.tibs.2009.01.005.
[251]
Peretó, J.; López-Garcia, P.; Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci.?2004, 29, 469–477, doi:10.1016/j.tibs.2004.07.002.
[252]
Matsumi, R.; Atomi, H.; Driessen, A.J.M.; van der Oost, J. Isoprenoid biosynthesis in Archaea-Biochemical and evolutionary implications. Res. Microbiol.?2011, 162, 39–52, doi:10.1016/j.resmic.2010.10.003.
[253]
Boucher, Y.; Kamekura, M.; Doolittle, W.F. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol.?2004, 52, 515–527, doi:10.1111/j.1365-2958.2004.03992.x.
[254]
Koga, Y.; Morii, H. Biosynthesis of ether-type polar lipids in Archaea and evolutionary considerations. Microbiol. Mol. Biol. Rev.?2007, 71, 97–120, doi:10.1128/MMBR.00033-06.
[255]
Lee, Y.; Chan, S.I. Effect of lysolecithin on the structure and permeability of lecithin bilayer vescicles. Biochemistry?1977, 16, 1303–1309, doi:10.1021/bi00626a010.
[256]
Stahlberg, H.; Fotiadis, D.; Scheuring, S.; Rémigny, H.; Braun, T.; Mitsuoka, Y.; Fujiyoshi, Y.; Engel, A. Two-dimensional crystals: a powerful approach to assess structure, function and dynamics of membrane proteins. FEBS Lett.?2001, 504, 166–172, doi:10.1016/S0014-5793(01)02746-6.
[257]
Bulik, D.; van Ophem, P.; Manning, J.; Shen, Z.; Newburg, D.; Jarroll, E. UDP-N-acetylglucosamine pyrophosphorylase: a key enzyme in encysting Giardia is allosterically regulated. J. Biol. Chem.?2000, 275, 14722–14728.
[258]
Berbee, M.L.; Taylor, J.W. Systematics and evolution. In The Mycota; McLaughlin, D.J., McLaughlin, E.G., Lemke, P.A., Eds.; Springer-Verlag: Berlin, Germany, 2001.
[259]
Dujon, B. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet.?2006, 22, 375–387, doi:10.1016/j.tig.2006.05.007.
[260]
Carlile, M.J. 1980 From prokaryote to eukaryote: gains and losses. In The Eukaryotic Microbial Cell; Gooday, G.W., Lloyd, D., Trinci, A.P.J., Eds.; Cambridge University Press: Cambridge, UK, 1-40.
[261]
Pianka, E.R. On r- and K-selection. Am. Nat.?1970, 104, 592–597.
[262]
Lynch, M. Streamlining and simplification of microbial genome architecture. Annu. Rev. Microbiol.?2006, 60, 327–349, doi:10.1146/annurev.micro.60.080805.142300.
Forterre, P. The universal tree of life and the last universal cellular ancestor: revolution and counterrevolutions. In Evolutionary Genomics and Systems Biology; Caetano-Anollés, G., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 43–62.
[265]
Wolf, Y.I.; Rogozin, I.B.; Kondrashov, A.S.; Koonin, E.V. Genome alignment, evolution of prokaryotic genome organization and prediction of gene function using genomic context. Genome Res.?2001, 11, 356–372, doi:10.1101/gr.GR-1619R.
[266]
Martin, W.; Hoffmeister, M.; Rotte, C.; Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol. Chem.?2001, 382, 1521–1539, doi:10.1515/BC.2001.187.
[267]
Koonin, E.V. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases. Biol. Direct?2006, 1, 39:1–39:18.
[268]
Koonin, E.V.; Senkevich, T.G.; Dolja, V.V. The ancient Virus World and evolution of cells. Biol. Direct?2006, 1, 29–1.
[269]
Claverie, J.M.; Ogata, H.; Audic, S.; Abergel, C.; Suhre, K.; Fournier, P.E. Mimivirus and the emerging concept of “giant” virus. Virus Res.?2006, 117, 133–144, doi:10.1016/j.virusres.2006.01.008.
[270]
Raoult, D.; Forterre, P. Redefining viruses: Lessons from Mimivirus. Nat. Rev. Microbiol.?2008, 6, 315–319, doi:10.1038/nrmicro1858.
[271]
Boyer, M.; Madoui, M.A.; Gimenez, G.; La Scola, B.; Raoult, D. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th Domain of Life including Giant Viruses. PLoS One?2010, 5, e15530:1–e15530:8.
[272]
This epigraph is paraphrased from Voltaire, "Le doute n'est pas une condition agréable, mais la certitude est absurde", letter to Frederick II of Prussia, 6 April 1767. Available online: http://en.wikiquote.org/wiki/Voltaire (accessed on 13 January 2012).
[273]
Forterre, P.; Philippe, H. Where is the root of the universal tree of life? BioEssays?1999, 21, 871–879, doi:10.1002/(SICI)1521-1878(199910)21:10<871::AID-BIES10>3.0.CO;2-Q.
[274]
Reanney, D.C. On the origin of prokaryotes. J. Theor. Biol.?1974, 48, 243–251, doi:10.1016/0022-5193(74)90194-5.
[275]
Lane, N.; Martin, W. The energetics of genome complexity. Nature?2010, 467, 929–934, doi:10.1038/nature09486.
[276]
Danchin, A. Archives or palimpsests? Bacterial genomes unveil a scenario for the origin of life. Biol. Theory?2007, 2, 52–61, doi:10.1162/biot.2007.2.1.52.
[277]
Danchin, A.; Fang, G.; Noria, S. The extant core bacterial proteome is an archive of the origin of life. Proteomics?2007, 7, 875–889, doi:10.1002/pmic.200600442.
[278]
Origins of Life: The Primal Self-Organization; Egel, R., Lankenau, D.-H., Mulkidjanian, A.Y., Eds.; Springer-Verlag: Heidelberg, Germany, 2011.
[279]
Martin, W. Heinrich-Heine-Universit?t, Düsseldorf. 2011.