Background: We have shown previously that the abrogation of acute and chronic rejection of rat cardiac allografts occurs through the down-regulation of RhoA pathway and involves the changes in RhoA kinase (ROCK)-dependent actin cytoskeleton and T cell motility. Here we studied the ability of the Y-27632, a highly selective inhibitor of Rho-associated protein kinase p160ROCK (ROCK1), to abrogate chronic rejection of the allograft and influence T cell infiltration. Methods: Heterotopic cardiac transplants were performed between donor Wistar Furth (WF) and ACI recipient rats. Controls received sub-therapeutic dose of cyclosporine (CsA, 10 mg/kg) for 3 days or 7 days therapeutic dose of cyclosporine. The experimental groups of ACI recipient received one preoperative dose of the Y-27632 inhibitor (2 mg/kg, gavage feed) in conjunction with the sub-therapeutic dose of CsA for 3 days or inhibitor alone for 7 days. The cardiac grafts were harvested at 100 days of post-transplantation for histological and immunohistochemical assessment of chronic rejection, vascular sclerosis, and infiltration by different T cell subtypes. Results: Cardiac allografts from recipients exposed to Y-27632 inhibitor in conjunction with sub-therapeutic dose of CsA showed drastically reduced vascular sclerosis, minimal myocardial total cellular infiltration, and were selectively infiltrated with Foxp3+ T regulatory (Treg) cells. Conclusions: Our novel finding that a single dose of the ROCK1 inhibitor Y-27632 attenuates chronic rejection in rat cardiac model system by promoting development of Treg cells warrants its potential as a novel therapeutic agent specific for the inhibition of chronic rejection.
References
[1]
H. L. Trivedi, “Immunobiology of Rejection and Adaptation,” Transplantation Proceedings, Vol. 39, No. 3, 2007, pp. 647-652. doi:10.1016/j.transproceed.2007.01.047
[2]
G. W. Butcher and J. C. Howard, “Genetic Control of Transplant Rejection,” Transplantation, Vol. 34, No. 4, 1982, pp. 161-166.
doi:10.1097/00007890-198210000-00001
[3]
D. L. Dunn, “Problems Related to Immunosuppression. Infection and Malignancy Occurring after Solid Organ Transplantation,” Critical Care Clinics, Vol. 6, 1990, pp. 955-977.
[4]
A. I. Colovai, E. Renna-Molajoni, R. Cortesini and N. Suciu-Foca, “New Approaches to Specific Immunomodulation in Transplantation,” International Reviews of Immunology, Vol. 13, No. 3, 1996, pp. 161-172.
doi:10.3109/08830189609061745
[5]
O. Joffre, T. Santolaria, D. Calise, T. Al Saati, D. Hudrisier, P. Romagnoli, et al., “Prevention of Acute and Chronic Allograft Rejection with CD4+CD25+Foxp3+ Regulatory T Lymphocytes,” Nature Medicine, Vol. 14, 2008, pp. 88-92. doi:10.1038/nm1688
[6]
R. M. Ghobrial, T. Hamashima, M. Wang, S. M. Stepkowski and B. D. Kahan, “Induction of Transplantation Tolerance by Chimeric Donor/Recipient Class I RT1.Aa Molecules,” Transplantation, Vol. 62, No. 7, 1996, pp. 1002-1010. doi:10.1097/00007890-199610150-00020
[7]
N. Semiletova, X.-D. Shen, M. C. Fishbein, F. Gao, S. J. Slomowitz, Q. Jiao, et al., “Posttransplant Administration of Allochimeric Major Histocompatibility Complex Class-I-Molecules Induces True Transplantation Tolerance,” Transplantation, Vol. 75, No. 4, 2003, pp. 550-553.
doi:10.1097/01.TP.0000046942.02001.26
[8]
N. V. Semiletova, X.-D. Shen, B. Baibakov, D. M. Feldman, K. Mukherjee, J. M. Frank, et al., “Inhibition of Chronic Rejection by Antibody Induced Vascular Accommodation in Fully Allogeneic Heart Allografts,” Transplantation, Vol. 80, No. 11, 2005, pp. 1535-1340.
doi:10.1097/01.tp.0000188952.10692.18
[9]
J. S. Singer, A. Mhoyan, M. C. Fishbein, X.-D. Shen, F. Gao, D. Zhao, et al., “Allochimeric Class I MHC Molecules Prevent Chronic Rejection and Attenuate Alloantibody Responses,” Transplantation, Vol. 72, No. 8, 2001, pp. 1408-1416. doi:10.1097/00007890-200110270-00014
[10]
T. Skelton, A. M. Cordero, N. J. Nelles, M. Ganachari, J. Sidhu, N. Tejpal, et al., “Allochimeric MHC I-Conditioned T Cells Attenuate Chronic Rejection in Rat Cardiac Model System,” Journal of Clinical Cell Immunology, Vol. 2, 2011, p. 108.
[11]
W. Lisik, N. Tejpal, Y. Gong, T. S. Skelton, M. Ganachari, E. G. Bremer, et al., “Down Regulation of Genes Involved in T Cell Polarity and Motility during the Induction of Heart Allograft Tolerance by Allochimeric MHC I,” PLoS One, Vol. 4, 2009, Article ID: e8020.
doi:10.1371/journal.pone.0008020
[12]
T. S. Skelton, N. Tejpal, Y. Gong, J. Z. Kubiak, M. Kloc and R. M. Ghobrial, “Allochimeric Molecules and Mechanisms in Abrogation of Cardiac Allograft Rejection,” Journal of Heart Lung Transplantation, Vol. 31, No. 1, 2012, pp. 73-84. doi:10.1016/j.healun.2011.01.715
[13]
T. S. Skelton, N. Tejpal, Y. Gong, M. Kloc and R. M. Ghobrial, “Downregulation of RhoA and Changes in T Cell Cytoskeleton Correlate with the Abrogation of Allograft Rejection,” Transplantation Immunology, Vol. 23, No. 4, 2010, pp. 185-193. doi:10.1016/j.trim.2010.06.009
[14]
W. Lisik, Y. Gong, N. Tejpal, T. S. Skelton, E. G. Bremer, M. Kloc, et al., “Intragraft Gene Expression Profile Associated with the Induction of Tolerance by Allochimeric MHC I in the Rat Heart Transplantation Model,” Genesis, Vol. 48, No. 1, 2010, pp. 8-19.
[15]
D. Liu, X. D. Shen, Y. Zhai, W. Lam, J. Liao, R. W. Busuttil and R. M. Ghobrial, “Intragraft Selection of the T Cell Receptor Repertoire by Class I MHC Sequences in Tolerant Recipients,” PLoS One, Vol. 4, 2009, Article ID: e6076. doi:10.1371/journal.pone.0006076
[16]
J. K. Burkhardt, E. Carrizosa and M. H. Shaffer, “The Actin Cytoskeleton in T Cell Activation,” Annual Reviews of Immunology, Vol. 26, 2008, pp. 233-259.
doi:10.1146/annurev.immunol.26.021607.090347
[17]
M. M. Al-Alwan, R. S. Liwski, S. M. M. Haeryfar, W. H. Baldridge, D. W. Hoskin, G. Rowden and K. A. West, “Cutting Edge: Dendritic Cell Actin Cytoskeletal Polarization during Immunological Synapse Formation Is Highly Antigen-Dependent,” Journal of Immunology, Vol. 171, No. 9, 2003, pp. 4479-4483.
[18]
C. Brossard, V. Feuillet, A. Schmitt, C. Randriamampita, M. Romao and G. Raposo, “Trautmann, A. Multifocal Structure of the T Cell-Dendritic Cell Synapse,” European Journal of Immunology, Vol. 35, No. 6, 2005, pp. 1741-1753. doi:10.1002/eji.200425857
[19]
M. L. Dustin, “Cell Adhesion Molecules and Actin Cytoskeleton at Immune Synapses and Kinapses,” Current Opinion in Cell Biology, Vol. 19, No. 5, 2007, pp. 529-533. doi:10.1016/j.ceb.2007.08.003
[20]
M. L. Dustin and J. A. Cooper, “The Immunological Synapse and the Actin Cytoskeleton: Molecular Hardware for T Cell Signaling,” Nature Immunology, Vol. 1, No. 1, 2000, pp. 23-29. doi:10.1038/76877
[21]
Y. Huang and J. K. Burkhardt, “T-Cell-Receptor-Depen- dent Actin Regulatory Mechanisms,” Journal of Cell Sciences, Vol. 120, No. 5, 2007, pp. 723-730.
doi:10.1242/jcs.000786
[22]
D. Sancho, M. Vicente-Manzanares, M. Mittelbrunn, M. C. Montoya, M. Gordon-Alonso, J. M. Sarrador and F. Sanchez-Madrid, “Regulation of Microtubule-Organizing Center Orientation and Actomyosin Cytoskeleton Rear- rangement during Immune Interactions,” Immunological Reviews, Vol. 189, No. 1, 2002, pp. 84-97.
doi:10.1034/j.1600-065X.2002.18908.x
[23]
M. Vicente-Manzanares and F. Sánchez-Madrid, “Role of the Cytoskeleton during Leukocyte Responses,” National Reviews of Immunology, Vol. 4, No. 2, 2004, pp. 110-122.
doi:10.1038/nri1268
[24]
I. Corre, M. Gomez, S. Vielkind and D. A. Cantrell, “Ana- lysis of Thymocyte Development Reveals That the GTPase RhoA Is a Positive Regulator of T Cell Receptor Responses in Vivo,” Journal of Experimental Medicine, Vol. 194, No. 7, 2001, pp. 903-913.
doi:10.1084/jem.194.7.903
[25]
M. Vicente-Manzanares, M. Rey, M. Pe′rez-Mart?′nez, M. Ya′n?ez-Mo′, D. Sancho, J. R. Cabrero, O. Barreiro, H. de la Fuente, K. Itohand F. Sa′nchez-Madrid, “The RhoA Effector mDia Is Induced during T Cell Activation and Regulates Actin Polymerization and Cell Migration in T Lymphocytes,” Journal of Immunology, Vol. 171, No. 2, 2003, pp. 1023-1034.
[26]
Y. Xu, J. Li, G. D. Ferguson, F. Mercurio, G. Khambatta, L. Morrison, A. Lopez-Girona, L. G. Corral, D. R. Webb, B. L. Bennett and W. Xie, “Immunomodulatory Drugs Reorganize Cytoskeleton by Modulating Rho GTPases,” Blood, Vol. 114, No. 2, 2009, pp. 338-345.
doi:10.1182/blood-2009-02-200543
[27]
A. B. Pernis, “Rho GTPase-Mediated Pathways in Mature CD4+ T Cells,” Autoimmunity Reviews, Vol. 8, No. 3, 2009, pp. 199-203. doi:10.1016/j.autrev.2008.07.044
[28]
J. H. Lee, T. Katakai, T. Hara, H. Gonda, M. Sugai and A. Shimizu, “Roles of p-ERM and Rho-ROCK Signaling in Lymphocyte Polarity and Uropod Formation,” Journal of Cell Biology, Vol. 167, No. 2, 2004, pp. 327-337.
doi:10.1083/jcb.200403091
[29]
R. Nijhara, P. B. van Hennik, M. L. Gignac, M. J. Kruhlak, P. L. Hordijk, J. Delon, et al., “Rac1 Mediates Collapse of Microvilli on Chemokine-Activated T Lymphocytes,” Journal of Immunology, Vol. 173, No. 8, 2004, pp. 4985-4993.
[30]
A. Delaguillaumie, C. Lagaudrière-Gesbert, M. R. Popoff and H. Conjeaud, “Rho GTPases Link Cytoskeletal Rearrangements and Activation Processes Induced Via the Tetraspanin CD82 in T Lymphocytes,” Journal of Cell Sciences, Vol. 115, No. 2, 2002, pp. 433-443.
[31]
A. P. Wheelera and A. J. Ridley, “Why Three Rho Proteins? RhoA, RhoB, RhoC, and Cell Motility,” Experimental Cell Research, Vol. 301, No. 1, 2004, pp. 43-49.
doi:10.1016/j.yexcr.2004.08.012
[32]
P. Tharaux, R. Bukoski, P. Rocha, S. Crowley, P. Ruiz, C. Nataraj, et al., “Rho Kinase Promotes Alloimmune Responses by Regulating the Proliferation and Structure of T Cells,” Journal of Immunology, Vol. 171, No. 1, 2003, pp. 96-105.
[33]
S. Ohki, K. Iizuka, S. Ishikawa, M. Kano, K. Dobashi, A. Yoshii, et al., “A Highly Selective Inhibitor of Rho-Associated Coiled-Coil Forming Protein Kinase, Y-27632, Prolongs Cardiac Allograft Survival of the BALB/c-to-C3H/He Mouse Model,” Journal of Heart and Lung Transplantation, Vol. 20, No. 9, 2001, pp. 956-963.
doi:10.1016/S1053-2498(01)00292-3