全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

A Novel Method for Culturing of Leptothrix sp. Strain OUMS1 in Natural Conditions

DOI: 10.3390/min2020118

Keywords: Leptothrix sp. OUMS1, novel culturing method in natural groundwater, sheath formation, bacterial carbohydrates, bacterial exudation, deposition of aqueous-phase iron

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although some strains of Leptothrix spp. isolated from aquatic environments have been characterized by culturing them in laboratory conditions, they often show morphological and chemical features distinct from those found in natural environments. To resolve this discrepancy, a novel cultivation method was devised for culturing such strains in natural groundwater. Leptothrix sp. strain OUMS1 was pre-cultured in a medium lacking Fe for 2 days, and then injected into a small dialysis tube bag and immersed in a container with continuously flowing groundwater for 1–3 and 14 days. Microscopic analysis of the initial phase of sheath formation and arbitrary comparisons with medium cultures revealed that in groundwater the surface coat of the sheath comprised much thinner fibrils, and an inner sheath wall that was much thinner and more indistinct compared with medium cultures. These differences were probably attributable to poorer secretion from the cell surface in groundwater conditions. A nutrient-rich medium likely activates cell metabolism and promotes secretion, resulting in a thicker inner sheath wall and thicker outer coat fibrils. Aqueous-phase Fe was deposited on immature sheaths in a similar manner in both cultures. These results indicate that laboratory culture of isolated microbes does not always reflect their characteristics in natural environments.

References

[1]  Ferris, F.G.; Fyfe, W.S.; Beveridge, T.J. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem.Geol. 1987, 63, 225–232, doi:10.1016/0009-2541(87)90165-3.
[2]  Ghiorse, W.C.; Hirsch, P. An ultrastructural study of iron and manganese deposition associated with extrcellular polymers of pedomicrobium-like budding bacteria. Arch. Microbiol. 1979, 123, 213–226, doi:10.1007/BF00406653.
[3]  Ghiorse, W.C. Biology of iron- and manganese-depositing bacteria. Annu. Rev. Microbiol. 1984, 38, 515–550, doi:10.1146/annurev.mi.38.100184.002503.
[4]  Van Veen, W.L.; Mulder, E.G.; Deinema, M.H. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 1978, 42, 329–356.
[5]  Knoll, A.H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth; Princeton University Press: Oxfordshire, UK, 2003; p. 92.
[6]  Emerson, D.; Fleming, E.J.; McBeth, J.M. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu. Rev. Microbiol. 2010, 64, 561–583, doi:10.1146/annurev.micro.112408.134208.
[7]  Fleming, E.J.; Langdon, A.E.; Martinez-Garcia, M.; Stepanauskas, R.; Poulton, N.J.; Masland, E.D.P.; Emerson, D. What’s new is old: Resolving the identity of Leptothrix ochracea using single cell genomics, pyrosequencing and FISH. PLoS ONE 2011, 6, 1–16.
[8]  Furutani, M.; Suzuki, T.; Ishihara, H.; Hashimoto, H.; Kunoh, H.; Takada, J. Assemblage of bacterial saccharic microfibrils in sheath skeleton formed by cultured Leptothrix sp. strain OUMS1. J. Marine Sci. Res. Development. 2011.
[9]  Furutani, M.; Suzuki, T.; Ishihara, H.; Hashimoto, H.; Kunoh, H.; Takada, J. Initial assemblage of bacterial saccharic fibrils and element deposition to form an immature sheath in cultured Leptothrix sp. strain OUMS1. Minerals 2011, 1, 157–166, doi:10.3390/min1010157.
[10]  Suzuki, T.; Hashimoto, H.; Ishihara, H.; Kasai, T.; Kunoh, H.; Takada, J. Structural and spatial associations between Fe, O, and C in the network structure of the Leptothrix ochracea sheath surface. Appl. Environ. Microbiol. 2011, 77, 7873–7875.
[11]  Emerson, D.; Ghiorse, W.C. Isolation, cultural maintenance, and taxonomy of a sheath-forming strain of Leptothrix discophora and characterization of manganese-oxidizing activity associated with the sheath. Appl. Environ. Microbiol. 1992, 58, 4001–4010.
[12]  Sawayama, M.; Suzuki, T.; Hashimoto, H.; Kasai, T.; Furutani, M.; Miyata, N.; Kunoh, H.; Takada, J. Isolation of a Leptothrix strain, OUMS1, from ocherous deposits in groundwater. Curr. Microbiol. 2011, 63, 173–180.
[13]  Boonfueng, T.; Axe, L.; Yee, N.; Hahn, D.; Ndiba, P.K. Zn sorption mechanisms onto sheathed Leptothrix discophora and the impact of the nenoparticulate biogenic Mn oxide coating. J. Colloid Interface Sci. 2009, 333, 439–447.
[14]  Emerson, D.; Ghiorse, W.C. Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 1993, 175, 7808–7818.
[15]  Emerson, D.; Ghiorse, W.C. Role of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 1993, 175, 7819–7827.
[16]  Takeda, M.; Makita, H.; Ohno, K.; Nakahara, Y.; Koizumi, J. Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii. Int. J. Biol. Macromol. 2005, 37, 92–98, doi:10.1016/j.ijbiomac.2005.09.002.
[17]  Hashimoto, H.; Yokoyama, S.; Asaoka, H.; Kusano, Y.; Ikeda, Y.; Seno, M.; Takada, J.; Fujii, T.; Nakanishi, M.; Murakami, R. Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J. Magn. Magn. Mater. 2007, 310, 2405–2407.
[18]  Sakai, T.; Miyazaki, Y.; Murakami, A.; Sakamoto, N.; Ema, T.; Hashimoto, H.; Furutani, M.; Nakanishi, M.; Fujii, T.; Takada, J. Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold. Org. Biomol. Chem. 2010, 8, 336–338.
[19]  Park, P.; Ohno, T.; Kato-Kikuchi, H.; Miki, H. Alkaline bismuth stain a tracer for Golgi vesicles of plant cells. Stain Technol. 1987, 62, 253–256.
[20]  Spring, S. The genera Leptothrix and Sphaerotilus. The Prokaryotes 2006, 5, 758–777, doi:10.1007/0-387-30745-1_35.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133