全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

Geology and Age Constraints on the Origin of the Intrusion-Related, Sheeted Vein-Type ?kerberg Gold Deposit, Skellefte District, Sweden

DOI: 10.3390/min2040385

Keywords: Skellefte district, gold ore, sheeted vein complex, U-Pb dating, fluid inclusions, intrusion-related style

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Early Proterozoic (~1.9 Ga) Skellefte mining district in northern Sweden hosts abundant base metal deposits, but there are also gold-only deposits. The ?kerberg gold ore is unusual given the noted lack of alteration, a scarcity of sulfides and gold associated with thin (mm-cm wide) parallel quartz veins hosted in a gabbro. The gold content is positively correlated with the density of quartz veins, but gold often occurs between veins and also in parts of the gabbro where there is no veining. The gabbro is intruded by a granodiorite and associated pegmatite bodies, and U-Pb dating of zircon and baddeleyite suggest that these lithologies developed close in time at around 1.88 Ga ago. There are no primary inclusions in quartz veins, but different types of secondary aqueous inclusions occur. The ?kerberg ore is interpreted as a sheeted vein complex, with veins constrained to tensional cracks induced when a granodioritic magma intruded the competent, sheet-like gabbro intrusion. It is suggested that unmixing of the felsic magma also produced pegmatite bodies and a gel-like melt which invaded fractures in the gabbro and deposited silica. In a comparison, the ?kerberg ore shares many characteristics with the intrusion-related style of gold mineralizations.

References

[1]  Allen, R.L.; Weihed, P.; Svensson, S.-?. Setting of Zn-Cu-Au-Ag sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Econ. Geol. 1996, 91, 1022–1053, doi:10.2113/gsecongeo.91.6.1022.
[2]  Nicolson, D.; Rickard, D.; Jonsson, R. Gold distribution in volcanogenic massive sulfide ores, Skellefte district, N. Sweden. Geol. Soc. Aust. Abstr. Ser. 1988, 23, 161–164.
[3]  Weihed, J.B.; Bergstr?m, U.; Billstr?m, K.; Weihed, P. Geology, tectonic setting and origin of the Paleoproterozoic Boliden Cu-Au-As deposit, Skellefte district, northern Sweden. Econ. Geol. 1996, 91, 1073–1097, doi:10.2113/gsecongeo.91.6.1073.
[4]  Gáal, G.; Gorbatschev, R. An outline of the Precambrian evolution of the Baltic shield. Precambrian Res. 1987, 35, 15–52, doi:10.1016/0301-9268(87)90044-1.
[5]  Broman, C.; Billstr?m, K.; Gustavsson, K.; Fallick, A.E. Fluid inclusions, stable isotopes and gold deposition at Bj?rkdal, northern Sweden. Miner. Deposita 1994, 29, 139–149.
[6]  Weihed, P.; Weihed, J.B.; Sorjonen-Ward, P. Structural evolution of the Bj?rkdal gold deposit, Skellefte district, northern Sweden: Implications for early Proterozoic mesothermal gold in the late stage of the Svecokarelian orogen. Econ. Geol. 2003, 98, 1291–1310, doi:10.2113/gsecongeo.98.7.1291.
[7]  Billstr?m, K.; Broman, C.; Jonsson, E.; Recio, R.; Boyce, A.J.; Torssander, P. Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted Bj?rkdal Au deposit, northern Sweden. Int. J. Earth Sci. 2009, 98, 1027–1052, doi:10.1007/s00531-008-0301-8.
[8]  Weihed, P.; Bergstr?m, U. Proterozoic gold mineralizations in the Skellefte district, northern Sweden. In Proceeding of International Symposium Bicentennial Gold '88, Melbourne, Australia, 16-20 May 1988.
[9]  Bergstr?m, U.; Weihed, P. Structural aspects of some gold mineralizations in the Skellefte district. Geol. F?ren. Stockh. F?rh. 1991, 113, 42–44, doi:10.1080/11035899109453805.
[10]  Weihed, P. Litogeochemistry, metal and alteration zoning in the Proterozoic Tallberg porphyry-type deposit, northern Sweden. J. Geochem. Explor. 1992, 42, 301–325, doi:10.1016/0375-6742(92)90029-8.
[11]  Bejgarn, T.; ?reb?ck, H.; Weihed, P.; Nylander, J. Geology, petrology and alteration geochemistry of the Palaeoproterozoic intrusive hosted ?lgtr?sk Au deposit, northern Sweden. Geol. Soc. Lond. 2011, 350, 105–132.
[12]  Broman, C.; Bergstr?m, U.; Lindblom, S. Fluid evolution in gold-bearing veins associated with feldspar porphyry dikes at Vinliden in the Skellefte District, northern Sweden. Geol. F?ren. Stockh. F?rh. 1995, 117, 233–244.
[13]  Bergstr?m, U. Gold mineralization in the Vinliden area, Skellefte District, northern Sweden. Geol. F?ren. Stockh. F?rh. 1996, 118, A43–A44.
[14]  Sundblad, K.; Weihed, P.; Billstr?m, K.; Markkula, H.; M?kel?, M. Source of metals and age constraints for epigenetic gold deposits in the Skellefte and Pohjanmaa districts, central part of the Fennoscandian Shield. Miner. Deposita 1993, 28, 181–190.
[15]  Bergman, J.; Bergstr?m, U.; Weihed, P. Genesis and structural evolution of early Proterozoic gold lode deposits in the Skellefte district, northern Sweden. In Proceedings of the 28th International Geological Congress, Washington, DC, USA, 9-19 July 1989.
[16]  Bergman, J. Structural geology of Grundfors, a quartz vein related gold deposit in the Skellefte district, northern Sweden. Geol. F?ren. Stockh. F?rh. 1992, 114, 227–234, doi:10.1080/11035899209453887.
[17]  Hart, I.; Marsh, S.; Laurent, I. Svartliden—A new style of mineralization in the Skellefte district. In Gold '99 Trondheim: Precambrian Gold in Fennoscandian and Ukrainian Shields and Related Areas: Abstract Volume, Proceeding of Nordic Mineral resources Symposium, Trondheim, Norway, 4–6 May 1999; Cook, N.J., Sundblad, K., Eds.; Geological Survey of Norway: Trondheim, Norway, 1999; pp. 87–88.
[18]  Bark, G.; Weihed, P. Orogenic gold in the new Lycksele-Storuman ore province, northern Sweden: The Palaeproterozoic F?boliden deposit. Ore Geol. Rev. 2007, 32, 431–451, doi:10.1016/j.oregeorev.2007.01.001.
[19]  Robert, F.; Poulsen, K.H.; Dubé, B. Gold deposits and their geological classification. In Geophysics and Geochemistry at the Millennium: Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, Proceeding of Fourth Decennial International Conference on Mineral Exploration, Toronto, Canada, 14–18 September 1997; Gubins, A.G., Ed.; Prospectors and Developers Association of Canada: Toront, ON, Canada, 1997; pp. 209–220.
[20]  Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27, doi:10.1016/S0169-1368(97)00012-7.
[21]  Hart, C.J.R.; Goldfarb, R.J. Distinguishing intrusion-related from orogenic gold systems. In Proceedings of the 2005 New Zealand Minerals Conference, Auckland, New Zealand, 13–16 November 2005; pp. 125–133.
[22]  Billstr?m, K.; Eilu, P.; Martinsson, O.; Niiranen, T.; Broman, C.; Weihed, P.; Wanhainen, C.; Ojala, J. IOCG and related mineral deposits of the northern Fennoscandian shield. In Hydrothermal Iron Oxide Copper—Gold and Related Deposits; Porter, T.M., Smith, M.P., Coppard, J., Herrington, R., Eds.; PGC Publishing: Adelaide, Australia, 2011; Volume IV, pp. 381–414.
[23]  Mattson, B.; Lundstam, E. Bedrock Sampling and Diamond Drilling in ?kerberg, Skellefte Field, 1995–1998; Boliden Internal Report GP 99009; Boliden Mineral AB: Boliden, Sweden, 1999; pp. 1–10.
[24]  Bergstr?m, U. Marginal basin magmatism in an ancient volcanic arc: Petrology of the Palaeoproterozoic Mal?-group basalts, Skellefte District, Northern Sweden. GFF 1997, 119, 151–157, doi:10.1080/11035899709546472.
[25]  Kathol, B.; Weihed, P. Description of Regional Geological and Geophysical Maps of the Skellefte District and Surrounding Areas; Geological Survey of Sweden: Uppsala, Sweden, 2005.
[26]  Wilson, M.R.; Hamilton, P.J.; Fallick, A.E.; Aftalion, M.; Michard, A. Granites and proterozoic crustal evolution in Sweden: Evidence from Sm-Nd, U-Pb and O systematics. Earth Planet. Sci. Lett. 1985, 72, 376–388, doi:10.1016/0012-821X(85)90059-7.
[27]  González-Roldán, M.J. Mineralogía, Petrología y geoquímica de Intrusions Sin-volcánicas en el Distrito Minero de Skellefte, Norte de Suecia. Ph.D. Thesis, University of Huelva, Huelva, Spain, 2010.
[28]  Bejgarn, T.; S?derlund, U.; Weihed, P.; ?reb?ck, H.; Ernst, R.E. Palaeoproterozoic porphyry Cu-Au, intrusion-hosted Au and ultramafic Cu-Ni deposits in the Fennoscandian Shield: Temporal constraints using U-Pb geochronology. Lithos 2012. in press.
[29]  Lundstr?m, I. Description to the rock map sheet 23K Boliden SO. Geol. Surv. Swed. 2000, 113, 243–248.
[30]  ?reb?ck, H.; Mattsson, B.; Wasstr?m, A. Geochemical Characteristics of Granitoids in the Skellefte District and Surrounding Areas: Development for Au Exploration; Boliden Internal Report GP2005–25; Boliden Mineral AB: Boliden, Sweden, 2004; pp. 1–15.
[31]  Lundstr?m, I.; Persson, P.-O.; Bergstr?m, U. Indications of early deformational events in the northeastern part of the Skellefte field. Indirect evidence from geologic and radiometric data from the Stavatr?sk-Klint?n area, Boliden map-sheet. Geol. Surv. Swed. C 1999, 831, 52–69.
[32]  Teertstra, D.K.; ?erny, P.; Langhof, J.; Smeds, S.-A.; Grensman, F. Pollucite in Sweden: Occurrences, crystal chemistry, petrology and subsolidus history. Geol. F?ren. Stockh. F?rh. 1996, 118, 141–150.
[33]  Grensman, F.; Langhof, J. ?kerberget: Guldgruva med litiumpegmatite. Stein 1991, 18, 20–22.
[34]  Romer, R.L.; Smeds, S.-A. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Res. 1994, 67, 141–158, doi:10.1016/0301-9268(94)90008-6.
[35]  Weihed, P.; Bergman, J.; Bergstr?m, U. Metallogeny and tectonic evolution of the early Proterozoic Skellefte District, northern Sweden. Precambrian Res. 1992, 58, 143–167, doi:10.1016/0301-9268(92)90117-7.
[36]  Billstr?m, K. Epigenetic gold along the margin of the Skellefte district, Sweden. In Gold '99 Trondheim: Precambrian Gold in Fennoscandian and Ukrainian Shields and Related Areas: Abstract Volume, Proceeding of Nordic Mineral Resources Symposium, Trondheim, Norway, 4–6 May 1999; Cook, N.J., Sundblad, K., Eds.; Geological Survey of Norway: Trondheim, Norway, 1999; pp. 25–27.
[37]  Sundblad, K. Metallogeny of gold in the Precambrian of northern Europe. Econ. Geol. 2003, 98, 1271–1290, doi:10.2113/gsecongeo.98.7.1271.
[38]  Eilu, P.; Weihed, P. Fennoscandian shield—orogenic gold deposits. Ore Geol. Rev. 2005, 27, 326–327, doi:10.1016/j.oregeorev.2005.07.006.
[39]  Dahlenborg, L. A rock magnetic study of the ?kerberg gold deposit, northern Sweden. M.Sc. Thesis, Lund University, Lund, Sweden, 2007.
[40]  Weihed, J.B. Regional Deformation Zones in the Skellefte and Arvidsjaur Areas; Final Research Report SGU-Project 03–862/93; Geological Survey of Sweden: Uppsala, Sweden, 1997.
[41]  Rutland, R.W.R.; Ski?ld, T.; Page, R.W. Age of deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer. Precambrian Res. 2001, 112, 239–259, doi:10.1016/S0301-9268(01)00166-8.
[42]  Weihed, P.; Billstr?m, K.; Persson, P.-O.; Weihed, J.B. Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. GFF 2002, 124, 163–180.
[43]  Billstr?m, K.; Weihed, P.; Allen, R.L. U-Pb Crustal evolution and temporal constraints on ore formation in the Skellefte ore district and surrounding areas, Sweden—new insights from single zircon U-Pb data. GFF 2012. submitted for publication.
[44]  Larson, S.-?.; Tullborg, E.-L. Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb Concordia. Geology 1998, 26, 919–922, doi:10.1130/0091-7613(1998)026<0919:WBSZYL>2.3.CO;2.
[45]  Bodnar, R.J. Introduction to aqueous fluid systems. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; pp. 81–99.
[46]  Bakker, R.J.; Dubessy, J.; Cathelineau, M. Improvements in clathrate modelling: I. The system H2O-CO2 with various salts. Geochim. Cosmochim. Acta 1996, 60, 1657–1681, doi:10.1016/0016-7037(96)00032-4.
[47]  Claesson, S.; Lundqvist, T. Origins and ages of Proterozoic granitoids in the Bothnian Basin, central Sweden; isotopic and geochemical constraints. Lithos 1995, 36, 115–140, doi:10.1016/0024-4937(95)00010-D.
[48]  Lundqvist, T.; Vaasjoki, M.; Persson, P.-O. U-Pb ages of plutonic and volcanic rocks in the Svecofennian Bothnian Basin, central Sweden, and their implications for the Palaeoproterozoic Evolution of the Basin. Geol. F?ren. Stockh. F?rh. 1998, 120, 357–363.
[49]  Billstr?m, K.; Weihed, P. Age and provenance of host rocks and ores in the Paleoproterozoic Skellefte district, northern Sweden. Econ. Geol. 1996, 91, 1054–1072.
[50]  Montelius, C.; Billstr?m, K.; Allen, R.L.; Barrett, T.J.; Mortensen, J.K.; Weihed, P.; Svenson, S.-?. The Genetic Relationship between Rhyolitic Volcanism and Zn-Cu-Au Deposits in the Maurliden Volcanic Centre, Skellefte District, Sweden: Volcanic Facies, Lithogeochemistry and Geochronology. Ph.D. Thesis, Lule? University of Technology, Lule?, Sweden, 2005.
[51]  Kerrich, R.; King, R. Hydrothermal zircons and baddeleyite in Val d’OrArchean mesothermal gold deposit: Characteristics, compositions, and inclusion properties, with implications for timing of primary gold mineralization. Can. J. Earth Sci. 1993, 30, 2334–2351, doi:10.1139/e93-203.
[52]  Fraser, G.L.; Pattison, D.R.M.; Heaman, L.M. Age of the Ballachulish and Glencoe Igneous Complexes (Scottish Highlands), and paragenesis of zircon, monazite and baddeleyite in the Ballachulish Aureole. J. Geol. Soc. Lond. 2004, 161, 447–462, doi:10.1144/0016-764903-018.
[53]  Billstr?m, K.; Wasstr?m, A.; Bergstr?m, U.; Stigh, J. Age, geochemistry and crustal contamination of the Hemberget mafic-ultramafic layered intrusion in the Knaften area, northern Sweden. In Radiometric Dating Results 5; Bergman, S., Ed.; Sveriges geologiska unders?kning: Uppsala, Sweden, 2002; pp. 18–30.
[54]  Thomas, R.; Webster, J.D.; Davidson, P. Understanding pegmatite formation: The melt and fluid inclusion approach. In Melt Inclusions in Plutonic Rocks; Webster, J.D., Ed.; Mineralogical Association of Canada: Ottawa, ON, Canada, 2006; Chapter 9, pp. 189–210.
[55]  De Assis Janasi, V.; Antenor Faria, C.; de Freitas, V.A.; Farias Vlach, S.R. Silicic segregations in subvolcanic intrusions: Clues to the origin of bimodal basalt-rhyolite associations in the northern Paraná magmatic province? In Proceeding of IV Simpósio de Vulcanismo e Ambientes Associados, Foz do Igua?u, Brazil, 11 April 2008.
[56]  Williams-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312, doi:10.2113/gsecongeo.100.7.1287.
[57]  Heinrich, C.A.; Driesner, T.; Stefansson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764, doi:10.1130/G20629.1.
[58]  Herrington, R.J.; Wilkinson, J.J. Colloidal gold and silica in mesothermal vein systems. Geology 1993, 21, 539–542.
[59]  Shelton, K.L.; So, C.-S.; Chang, J.S. Gold-rich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Econ. Geol. 1988, 83, 1221–1237.
[60]  Cliff, D.C.; Morávek, P. The Mokrsko gold deposit, central Bohemia, Czech Republic. In Mineral Deposits: From Their Origin to Their Environmental Impacts; Pasava, J., Kribek, B., Zák, S., Eds.; Balkema: Rotterdam, the Netherland, 1995; pp. 105–108.
[61]  Boiron, M-C.; Barakat, A.; Cathelineau, M.; Banks, D.A.V.; Durisova, J.; Morávek, P. Geometry and P-V-T-X conditions of microfissural ore fluid migration: the Mokrsko gold deposit (Bohemia). Chem. Geol. 2001, 173, 207–225, doi:10.1016/S0009-2541(00)00276-X.
[62]  Maloof, T.; Baker, T.; Thompson, J. The Dublin gulch intrusion-hosted gold deposit, Tombstone plutonic suite, Yukon territory, Canada. Miner. Deposita 2001, 36, 583–593, doi:10.1007/s001260100190.
[63]  Stephens, J.R.; Mair, J.L.; Oliver, N.H.S.; Hart, C.J.R.; Baker, T. Structural and mechanical controls on intrusion-related deposits of the Tombstone Gold Belt, Yukon, Canada, with comparisons to other vein-hosted ore-deposit types. J. Struct. Geol. 2004, 26, 1025–1041, doi:10.1016/j.jsg.2003.11.008.
[64]  Lefebure, D.V.; Hart, C. Plutonic-related Au quartz veins & veinlets (L02). In Selected British Columbia Mineral Deposit Profiles: Volume 2, Metallic Deposits; Lefebure, D.V., H?y, T., Eds.; British Columbia, Energy and Minerals Division, Geological Survey Branch: Victoria, BC, Canada, 1996; Open file (British Columbia. Geological Survey Branch) 1996-13.
[65]  Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research and exploration significance. Econ. Geol. 2003, 98, 1–29.
[66]  Whitehouse, M.J.; Kamber, B.; Moorbath, S. Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland—A reassessment based on combined ion-microprobe and imaging studies. Chem. Geol. 1999, 160, 201–224, doi:10.1016/S0009-2541(99)00066-2.
[67]  Stacey, J.S.; Kramer, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221, doi:10.1016/0012-821X(75)90088-6.
[68]  Ludwig, K.R. User’s Manual for Isoplot/Ex Version 2.2. A Geochronological Toolkit for a Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2000.
[69]  Wiedebeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberlie, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf trace element and REE analysis. Geostand. Newsl. 1995, 19, 1–23.
[70]  S?derlund, U.; Johansson, L. A simple way to extract baddeleyite (ZrO2). Geochem. Geophys. Geosyst. 2002, 3, 1014–1010, doi:10.1029/2001GC000212.
[71]  Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. 1971, 4, 1889–1906.
[72]  Smith, J.V. En échelon sigmoidal vein arrays hosted by faults. J. Struct. Geol. 1996, 18, 1173–1179, doi:10.1016/0191-8141(96)00041-7.
[73]  Tomkins, A.G.; Mavrogenes, J.A. Mobilization of gold as a polymetallic melt during pelite anatexis at the Challenger deposit, south Australia: A metamorphosed Archean gold deposit. Econ. Geol. 2002, 97, 1249–1271.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133