全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

Indium-Carrier Minerals in Polymetallic Sulphide Ore Deposits: A Crystal Chemical Insight into an Indium Binding State Supported by X-ray Absorption Spectroscopy Data

DOI: 10.3390/min2040426

Keywords: indium, carrier minerals, polymetallic sulphide deposits, Iberian Pyrite Belt, crystal chemistry, XANES

Full-Text   Cite this paper   Add to My Lib

Abstract:

Indium is a typical chalcophile element of the Earth’s crust, with a very low average content that seldom forms specific minerals, occurring mainly as dispersed in polymetallic sulphides. Indium recovery is based primarily on zinc extraction from sphalerite, the prototype of so-called tetrahedral sulphides, wherein metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions, leaving interstices accessible for further in-filling. Ascertaining the tendency towards the establishment of In-In interactions through an x-ray absorption spectroscopy approach would efficiently contribute to understanding the behavior of indium in the carrier mineral. The successful results of applying such a near-edge absorption (XANES) study at In L 3-edge to samples collected at the Lagoa Salgada polymetallic orebody in the Iberian Pyrite Belt (IPB) are described and the crystal chemistry of indium is re-evaluated, disclosing a potential clue for the metal binding state in polymetallic sulphides.

References

[1]  Figueiredo, M.O.; Silva, T.P.; de Oliveira, D.P.S.; Rosa, D.R.N. Searching for In-carrier minerals in polymetallic sulphide deposits: Digging deeper into the crystal chemistry of indium chalcogenides. In Proceedings of the 9th Biennial SGA Meeting, Dublin, Ireland, 20–24 August 2007.
[2]  Picot, P.; Pierrot, R. La roquesite, le premier minéral d’indium, CuInS2. Bull. Soc. Fr. Miner. Crist. 1963, 86, 7–14.
[3]  Genkin, A.D.; Muravéva, I.V. Indite and dzhalindite, new indium minerals. Zap. Vses. Mineralog. Obshch. 1963, 92, 445–457.
[4]  Ivanov, V.V. Indium in some igneous rocks of the USSR. Geochemistry 1963, 12, 1150–1160.
[5]  De Oliveira, D.P.S.; Rosa, D.R.N.; Figueiredo, M.O. Renewable energy technologies for the 21st century: The Iberian Pyrite Belt as a possible supplier of indium. In Proceedings of the 9th Biennial SGA Meeting, Dublin, Ireland, 20–24 August 2007.
[6]  Cook, N.J.; Ciobanu, C.I.; Williams, T. The mineralogy and mineral chemistry of indium in sulphide deposits and implications for mineral processing. Hydrometallurgy 2011, 108, 226–228, doi:10.1016/j.hydromet.2011.04.003.
[7]  Cook, N.J.; Sundblad, K.; Valkama, M.; Nyg?rd, R.; Ciobanu, C.I.; Danyushevsky, L. Indium mineralization in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chem. Geol. 2011, 284, 62–73, doi:10.1016/j.chemgeo.2011.02.006.
[8]  Epple, M.; Panth?fer, M.; Walther, R.; Deiseroth, H.-J. Crystal-chemical characterization of mixed-valence indium chalcogenides by X-ray absorption spectroscopy (EXAFS). Z. Kristallogr. 2000, 215, 445–453, doi:10.1524/zkri.2000.215.8.445.
[9]  Figueiredo, M.O.; Silva, T.P.; de Oliveira, D.P.S.; Rosa, D.R.N. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits? In Proceedings of EGU General Assembly 2010, Vienna, Austria, 2–7 May 2010.
[10]  Matos, J.X.; Barriga, F.J.A.S.; Oliveira, V.M.J.; Relvas, J.M.R.S.; Concei??o, P. The geological structure and hydrothermal alteration of the Lagoa Salgada orebody (Iberian Pyrite Belt—Sado Tertiary Basin). In Volcanic Environments and Massive Sulfide Deposits: Program and Abstracts; Gemmell, J.B., Pongratz, J., Eds.; University of Tasmania: Hobart, Tasmania, Australia, 2000.
[11]  De Oliveira, D.P.S.; Matos, J.X.; Rosa, D.R.N.; Rosa, C.J.P.; Figueiredo, M.O.; Silva, T.P.; Guimar?es, F.; Carvalho, J.; Pinto, A.; Relvas, J.; Reiser, F. The Lagoa Salgada orebody, Iberian Pyrite Belt, Portugal. Econ. Geol. 2011, 106, 1111–1128, doi:10.2113/econgeo.106.7.1111.
[12]  De Oliveira, D.P.S.; Rosa, D.R.N.; Matos, J.X.; Guimar?es, F,; Figueiredo, M.O.; Silva, T.P. Indium in the Lagoa Salgada orebody, Iberian Pyrite Belt Portugal. In Proceedings of the 10th Biennial SGA Meeting of the Society for Geology Applied to Mineral Deposits: “Smart Science for Exploration and Mining”, Townsville, Australia, 17–20 August 2009.
[13]  Arseneau, G. Laboratório Nacional de Engenharia Civil (LNEG), Lisbon, Portugal. Lagoa Salgada mining reserves study by Wardrop Engineering Inc, in Redcorp-Lagoa Salgada areaUnpublished Work, 2007.
[14]  Schwarz-Schampera, U.; Herzig, P.M. Indium: Geology, Mineralogy and Economics; Springer: Berlin, Germany, 2002; p. 257.
[15]  Lima-de-Faria, J. A condensed way of representing inorganic close-packed structures. Z. Kritallogr. 1965, 122, 346–358, doi:10.1524/zkri.1965.122.5-6.346.
[16]  Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.; Gilbert, S. Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study. Geochim. Cosmochim. Acta 2011, 75, 6473–6496, doi:10.1016/j.gca.2011.08.021.
[17]  Kato, A. Sakuraiite, a new mineral. Earth Sci. Stud. 1965, Sakurai Volume, 1–5.
[18]  Kissin, S.A.; Owens, D.R. The crystallography of sakuraiite. Canad. Miner. 1986, 24, 679–683.
[19]  Figueiredo, M.O.; Silva, T.P. Indium crystal chemistry: From thin-film materials to natural bulk chalcogenides. In Proceedings of ICANS 23, International Conference on Amorphous and Nanocrystalline Semiconductors, Utrecht, The Netherlands, 23-28 August 2009.
[20]  Schubert, K.; D?rre, E.; Gunzel, E. Kristalchemische Ergebnisse an Phasen aus B-elementen. Naturwissensch. 1954, 41, 448.
[21]  Schwarz, H.; Hillebrecht, H.; Deiseroth, H.-J.; Walther, R. In4Te3 und In4Se3 Neue-bestimmung der Kristallstrukturen, druck-abhj?ngiges Verhalten und eine Bemerkung zur Nichtexistenz von In4S3. Z. Kristallogr. 1995, 210, 342–347, doi:10.1524/zkri.1995.210.5.342.
[22]  Susini, J.; Barret, R.; Kaulich, B.; Oestreich, M.; Salomé, M. The X-ray microscopy facility at the ESRF: A status report. AIP Conf. Proc. 2000, 507, 19–26.
[23]  Solé, V.A.; Papillon, E.; Cotte, M.; Walter, Ph.; Susini, J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B 2007, 62, 63–68, doi:10.1016/j.sab.2006.12.002.
[24]  Cauchois, Y.; Mott, N.F. White lines and self absorption of lines in the X-ray absorption spectra of transition elements in the metallic state. Phil. Mag. 1949, 40, 1260–1269.
[25]  Hahn, H.; Klinger, W. über die Kristallstrukturen des In2S3 und In2Te3. Z. Anorg. Chem. 1949, 260, 97–109, doi:10.1002/zaac.19492600108.
[26]  T-Thienprasert, J.; Nukeaw, J.; Sungthong, A.; Porntheeraphat, S.; Singkarat, S.; Onkaw, D.; Rujirawat, S.; Limpijumnong, S. Local structure of indium oxynitride from X-ray absorption spectroscopy. Appl. Phys. Lett. 2008, 93, doi:10.1063/1.2965802.
[27]  Sham, T.K. L-edge X-ray absorption systematics of the noble metals Rh, Pd and Ag and the main group metals In and Sn: A study of the unoccupied density of states in 4d elements. Phys. Rev. B 1985, 31, 1888–1902, doi:10.1103/PhysRevB.31.1888.
[28]  Pearson, D.H.; Ahn, C.C.; Fultz, B. White lines and d-electron occupancies for 3d and 4d transition metals. Phys. Rev. B 1993, 47, 8471–8478, doi:10.1103/PhysRevB.47.8471.
[29]  Figueiredo, M.O.; Silva, T.P. The binding state of indium and tin in natural sulphides: First results of a comparative study by X-ray absorption spectroscopy at the L-edge. In Proceedings of the 20th General Meeting of the International Mineralogical Association (IMA2010), Budapest, Hungary, 21–27 August 2010; 6, p. 662.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413