全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

Rhenium Nanochemistry for Catalyst Preparation

DOI: 10.3390/min2030244

Keywords: heterogeneous catalysis, rhenium oxides, porous matrices, active centers, oxidation catalysis, olefin metathesis, methanol-to-formaldehyde conversion

Full-Text   Cite this paper   Add to My Lib

Abstract:

The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

References

[1]  Mol, J.C. Industrial applications of olefin metathesis. J. Mol. Catal. A Chem. 2004, 213, 39–45, doi:10.1016/j.molcata.2003.10.049.
[2]  Xiao, J.; Puddephatt, R.J. Pt–Re clusters and bimetallic catalysts. Coord. Chem. Rev. 1995, 143, 457–500.
[3]  Guryev, Y.V.; Ivanova, I.I.; Lunin, V.V.; Grünert, W.; van den Berg, M.V.E. Characterization of metal segregation in Pt-Re/Al2O3 reforming catalysts. Appl. Catal. A 2007, 329, 16–21, doi:10.1016/j.apcata.2007.06.015.
[4]  Laurenti, D.; Ninh Thi, K.T.; Escalona, N.; Massin, L.; Vrinat, M.; Llambias, F.J.G. Support effect with rhenium sulfide catalysts. Catal. Today 2008, 130, 50–55.
[5]  Okal, J.; Kubicka, H. Influence of oxidation-reduction treatment on activity and selectivity of Re supported on gamma-alumina. Appl. Catal. A 1998, 171, 351–359.
[6]  Escalona, N.; Vrinat, M.; Laureni, D.; Llambias, F.J.G. Rhenium sulfide in hydrotreating. Appl. Catal. A 2007, 322, 113–120, doi:10.1016/j.apcata.2007.01.019.
[7]  R?ty, J.; Pakkanen, T.A. Controlled gas-phase preparation and HDS activity of Re-2(CO)(10)/alumina catalysts. Catal. Lett. 2000, 65, 175–180, doi:10.1023/A:1019006413873.
[8]  Escalona, N.; Llambias, F.J.G.; Vrinat, M.; Nguyen, T.S.; Laurenti, D.; Agudo, A.L. Highly active ReS2/gamma-Al2O3 catalysts: Effect of calcination and activation over thiophene hydrodesulfurization. Catal. Comm. 2007, 8, 285–288, doi:10.1016/j.catcom.2006.05.053.
[9]  Escalona, N.; Ojeda, J.; Cid, R.; Alves, G.; Agudo, A.L.; Fierro, J.L.; Llambias, F.J.G. Characterization and reactivity of Re(x)/gamma-Al2O3 catalysts in hydrodesulfurization and hydrodenitrogenation of gas oil: Effect of Re loading. Appl. Catal. A 2002, 234, 45–54, doi:10.1016/S0926-860X(02)00197-7.
[10]  Wang, L.; Ohnishi, R.; Ichikawa, M. Selective dehydroaromatization of methane toward benzene on Re/HZSM-5 catalysts and effects of CO/CO2 addition. J. Catal. 2000, 190, 276–283.
[11]  Shu, Y.; Ohnishi, R.; Ichikawa, M. Improved methane dehydrocondensation reaction on HMCM-22 and HZSM-5 supported rhenium and molybdenum catalysts. Appl. Catal. A 2003, 252, 315–329, doi:10.1016/S0926-860X(03)00467-8.
[12]  Wang, L.S.; Murata, K.; Inaba, M. Production of pure hydrogen and more valuable hydrocarbons from ethane on a novel highly active catalyst system with a Pd-based membrane reactor. Catal. Today 2003, 82, 99–104.
[13]  Burch, R.; Paun, C.; Cao, X.M.; Crawford, P.; Goodrich, P.; Hardacre, C.; Hu, P.; McLaughlin, L.; Sa, J.; Thompson, J.M. Catalytic hydrogenation of tertiary amides at low temperatures and pressures using bimetallic Pt/Re-based catalysts. J. Catal. 2011, 283, 89–97.
[14]  Chayakul, K.; Srithanratana, T.; Hengrasmee, S. Catalytic activities of Re-Ni/CeO(2) bimetallic catalysts for water gas shift reaction. Catal. Today 2011, 175, 420–429.
[15]  Chang, A.S.Y.; Chen, W.; Wang, H.; Rowe, J.E.; Madey, T.E. Methanol reactions over oxygen-modified Re surfaces: Influence of surface structure and oxidation. J. Phys. Chem. B 2004, 108, 14643–14651.
[16]  Yuan, Y.; Shido, T.; Iwasawa, Y. The new catalytic property of supported rhenium oxides for selective oxidation of methanol to methylal. Chem. Comm. 2000, 1421–1422.
[17]  Tsoncheva, T.; Vankova, S.; Bozhkov, O.; Mehandjiev, D. Rhenium and manganese modified activated carbon as catalyst for methanol decomposition. Can. J. Chem. 2007, 85, 118–123, doi:10.1139/v07-004.
[18]  Kusakari, T.; Sasaki, T.; Iwasawa, Y. Selective oxidation of benzene to phenol with molecular oxygen on rhenium/zeolite catalysts. Chem. Comm. 2004, 992–993.
[19]  Salameh, A.; Baudoin, A.; Daravong, S.; Boehm, V.; Roeper, M.; Basset, J.M.; Coperet, C. CH3-ReO3 on gamma-Al2O3: Activity, selectivity, active site and deactivation in olefin metathesis. J. Catal. 2008, 253, 180–190.
[20]  Mol, J.C. Catalytic metathesis of unsaturated fatty acid esters and oils. Topics Catal. 2004, 27, 97–104.
[21]  Onaka, M.; Oikawa, T. Olefin metathesis over mesoporous alumina-supported rhenium oxide catalyst. Chem. Lett. 2002, 850–851, doi:10.1246/cl.2002.850.
[22]  Bakala, P.C.; Briot, E.; Millot, Y.; Piquemal, J.Y.; Bregeault, J.M. Comparison of olefin metathesis by rhenium-containing γ-alumina or silica–aluminas and by some mesoporous analogues. J. Catal. 2008, 258, 61–70.
[23]  Oikawa, T.; Ookoshi, T.; Tanaka, T.; Yamamoto, T.; Onaka, M. A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina. Micropor. Mesopor. Mater. 2004, 74, 93–103, doi:10.1016/j.micromeso.2004.04.026.
[24]  Jain, K.R.; Kühn, F.E. Immobilization of organorhenium (VII) oxides. J. Organomet. Chem. 2007, 692, 5532–5540.
[25]  Salameh, A.; Joubert, J.; Baudouin, A.; Lukens, W.; Delbecq, F.; Sautet, P.; Basset, J.M.; Coperet, C. CH3ReO3 on γ-Al2O3: Understanding its structure, initiation, and reactivity in olefin metathesis. Angew. Chem.Int. Ed. 2007, 46, 1–5.
[26]  Mandelli, D.; van Vliet, M.C.A.; Arnold, U.; Sheldon, R.A.; Schuchardt, U. Epoxidation of alkenes with hydrogen peroxide catalyzed by ReO4-SiO2 center dot Al2O3 and ReO4-Al2O3. J. Mol. Catal. A 2001, 168, 165–171, doi:10.1016/S1381-1169(00)00521-5.
[27]  Buffon, R.; Auroux, A.; Lefebvre, F.; Leconte, M.; Choplin, A.; Basset, J.M. A surface organomatallic approach to the syntrhesis of rhenium-based catalysts for the metathesis of olefins: CH3ReO3/Nb2O5. J. Mol. Catal. 1992, 76, 287–295, doi:10.1016/0304-5102(92)80165-D.
[28]  Buffon, R.; Choplin, A.; Leconte, M.; Basset, J.M. Surface organometallic chemistry of rhenium: Attempts to characterize a surface carbene in metathesis of olefins with the catalyst CH3ReO3/Nb2O5. J. Mol. Catal. 1992, 72, L7–L10, doi:10.1016/0304-5102(92)80038-I.
[29]  Scheiring, T.; Klein, A.; Kaim, W. EPR study of paramagnetic rhenium (I) complexes (bpy(center dot-))Re(CO)3X relevant to the mechanism of electrocatalytic CO2 reduction. J. Chem Soc., Perkin Trans. 1997, 2, 2569–2571.
[30]  Cecchet, F.; Alebbi, M.; Bignozzi, C.A.; Paolucci, F. Efficiency enhancement of the electrocatalytic reduction of CO2: fac-[Re(v-bpy)(CO)3Cl] electropolymerized onto mesoporous TiO2 electrodes. Inorg. Chim. Acta 2006, 359, 3871–3874, doi:10.1016/j.ica.2006.04.037.
[31]  Chen, Y.; Liu, W.; Jin, J.S.; Liu, B.; Zou, Z.G.; Zou, J.L.; You, X.Z. Rhenium (I) tricarbonyl complexes with bispyridine ligands attached to sulfur-rich core: Syntheses, structures and properties. J. Organom. Chem. 2009, 694, 763–770.
[32]  Coperet, C. Molecular design of heterogeneous catalysts: the case of olefin metathesis. New. J. Chem. 2004, 28, 1–10, doi:10.1039/b310662b.
[33]  Balcar, H.; Hamtil, R.; Zilkova, N.; Zhang, Z.; Pinnavaia, T.J.; Cejka, J. Re(VII) oxide on mesoporous alumina of different types—Activity in the metathesis of olefins and their oxygen-containing derivatives. Appl. Catal. A 2007, 320, 56–63, doi:10.1016/j.apcata.2006.12.020.
[34]  Salameh, A.; Coperet, C.; Basset, J.M.; B?hm, V.P.W.; R?per, M. Rhenium (VII) oxide/aluminumoxide: More experimental evidence for an oxametallacyclobutane intermediate and a pseudo-Wittig initiation stepin olefin metathesis. Adv. Synth. Catal. 2007, 349, 238–242, doi:10.1002/adsc.200600440.
[35]  Marquez-Alvarez, C.; Zilkova, N.; Perez-Pariente, J.; Cejka, J. Synthesis, characterization and catalytic applications of organized mesoporous alumina. Catal. Rev. Sci. Eng. 2008, 50, 222–286, doi:10.1080/01614940701804042.
[36]  Herrmann, W.A.; Rost, A.M.J.; Mitterpleininger, J.K.M.; Szesni, N.; Sturm, S.; Fischer, R.W.; Kühn, F.E. A cheap, efficient, and environmentally benign synthesis of the versatile catalyst methyltrioxorhenium (MTO). Angew. Chem. Int. Ed. 2007, 46, 7301–7303.
[37]  Jain, K.R.; Herrmann, W.; Kühn, F. Synthesis and catalytic applications of chiral monomeric organomolybdenum (VI) and organorhenium (VII) oxides in homogeneous and heterogeneous phase. Coord. Chem. Rev. 2008, 252, 556–568.
[38]  Oikawa, T.; Masui, Y.; Tanaka, T.; Chujo, Y.; Onaka, M. Lewis acid-modified mesoporous alumina: A new catalyst carrier for methyltrioxorhenium in metathesis of olefins bearing functional groups. J. Organom. Chem. 2007, 692, 554–561.
[39]  Frech, C.M.; Blacque, O.; Schmalle, H.W.; Berke, H.; Adlhart, C.; Chen, P. Unprecedented ROMP activity of low-valent rhenium–nitrosyl complexes: Mechanistic evaluation of an electrophilic olefin metathesis system. Chem. Eur. J. 2006, 12, 3325–3338, doi:10.1002/chem.200501025.
[40]  Bal, R.; Tada, M.; Kusakari, T.; Iwasawa, Y. Direct phenol synthesis from Benzene with molecular oxygen on rhenium/zeolite catalysts. Catal. Catal. 2005, 47, 72–74.
[41]  Viswanadham, N.; Shido, T.; Iwasawa, Y. Performances of rhenium oxide-encapsulated ZSM-5 catalysts in propene selective oxidation/ammoxidation. Appl. Catal. A 2001, 219, 223–233, doi:10.1016/S0926-860X(01)00695-0.
[42]  Viswanadham, N.; Shido, T.; Sasaki, T.; Iwasawa, Y. Ammonia-promoted rhenium-cluster formation in CH3ReO3-encapsulated H-ZSM-5 relevant to the performance of the catalytically selective oxidation/ammoxidation of propene. J. Phys. Chem. B. 2002, 106, 10955–10963.
[43]  Seisenbaeva, G.A.; Gohil, S.; Kessler, V.G. Sol-Gel Methods for Materials Processing; Innocenzi, P., Zub, Y., Kessler, V.G., Eds.; Springer: Dordrecht, Netherlands, 2008; pp. 397–403.
[44]  Edwards, P.G.; Wilkinson, G.; Hursthouse, M.B.; Malik, K.M.A. Improved syntheses of tetrachloro-oxorhenium (VI) and chlorotrioxo-rhenium (VII). Synthesis of alkoxo- and dialkylamido-rhenium com-pounds. The crystal and molecular structures of di-μ-methoxo-tetramethoxo-μ-oxo-dioxodirhenium (VI) (Re–Re), bis [lithium pentaiso-propoxo-oxorhenate (VI)–lithiumchloride–tetrahydrofuran(1/1/2)], and trans-tetraphenoxobis(trimethylphosphine)rhenium (IV). J. Chem. Soc. Dalton Trans. 1980, 2467–2472.
[45]  Seisenbaeva, G.A.; Shevelkov, A.V.; Kloo, L.; Gohil, S.; Tegenfeldt, J.; Kessler, V.G. Homo- and heterometallic rhenium oxomethoxide complexes with a M4(μ-O)2(μ-OMe)4 planar core—a new family of metal alkoxides with peculiar structural disorder. Preparation and X-ray single crystal study. J. Chem. Soc. Dalton Trans. 2001, 2762–2768.
[46]  Kessler, V.G.; Shevelkov, A.V.; Khvorykh, G.V.; Seisenbaeva, G.A.; Turova, N.Y.; Drobot, D.V. Electrochemical synthesis and physicochemical properties of rhenium(V) oxomethoxide, Re4O2(OMe)16. J. Inorg. Chem. 1995, 40, 1477–1483.
[47]  Kessler, V.G.; Seisenbaeva, G.A.; Shevelkov, A.V.; Khvorykh, G.V. Synthesis, crystal, molecular and electronic structure of a novel heterobinuclear alkoxide cluster (MeO)2ReO(μ-OMe)3 MoO(OMe)2. J. Chem. Soc. Chem. Commun. 1995, 1779–1780.
[48]  Kustov, A.L.; Kessler, V.G.; Romanovsky, B.V.; Seisenbaeva, G.A.; Drobot, D.V.; Shcheglov, P.A. Supported Re and Mo oxides prepared using binuclear precursors: Synthesis and characterization. J. Mol Catal. 2004, 216, 101–106, doi:10.1016/j.molcata.2004.02.009.
[49]  Seisenbaeva, G.A.; Sundberg, M.; Nygren, M.; Dubrovinsky, L.; Kessler, V.G. Thermal decomposition of the methoxide complexes MoO(OMe)4, Re4O6(OMe)12 and (Re1-xMox)O6(OMe)12 (0.24 ≤ x ≤ 0.55). Mater. Chem. Phys. 2004, 87, 142–148, doi:10.1016/j.matchemphys.2004.05.025.
[50]  Nikonova, O.A.; Jansson, K.; Kessler, V.G.; Sundberg, M.; Baranov, A.I.; Shevelkov, A.V.; Drobot, D.V.; Seisenbaeva, G.A. Electrochemical synthesis, structural characterization and decomposition of rhenium oxoethoxide. Inorg. Chem. 2008, 44, 1295–1300.
[51]  Nikonova, O.A.; Kessler, V.G.; Seisenbaeva, G.A. Substitution features in the isomorphous replacement series for metal-organic compounds (NbxTa1-x)4O2(OMe)14(ReO4)2, x= ? 0.7, 0.5, 0.3—Single-source precursors of complex oxides with organized porosity. J. Solid State Chem. 2008, 181, 3294–3302, doi:10.1016/j.jssc.2008.09.003.
[52]  Nikonova, O.A.; Kessler, V.G.; Drobot, D.V.; Shcheglov, P.A.; Seisenbaeva, G.A. Synthesis and X-ray single crystal study of niobium and tantalum Oxo-ethoxo-perrhenates, MV4O2(OEt)14(ReO4)2. Polyhedron 2007, 26, 862–866, doi:10.1016/j.poly.2006.09.088.
[53]  Nikonova, O.; Nedelec, J.M.; Kessler, V.G.; Seisenbaeva, G.A. Precursor-directed assembly of complex oxide nanobeads. The role of strongly coordinated inorganic anions. Langmuir 2011, 27, 11622–11628.
[54]  Nikonova, O.A.; Capron, M.; Fang, G.; Faye, J.; Mamede, A.S.; Jalowiecki-Duhamel, L.; Dumeignil, F.; Seisenbaeva, G.A. Novel approach to rhenium oxide catalysts for selective oxidation of methanol to DMM. J. Catal. 2011, 279, 310–318.
[55]  Secordel, X.; Yoboue, A.; Cristol, S.; Lancelot, C.; Capron, M.; Paul, J.F.; Berrier, E. Supported oxorhenate catalysts prepared by thermal spreading of metal Re(0) for methanol conversion to methylal. J. Solid State Chem. 2011, 184, 2806–2811.
[56]  Davenport, W.H.; Kollonitsch, V.; Kline, C.H. Advances in rhenium catalysts. Ind. Eng. Chem. 1968, 60, 10–11.
[57]  Seisenbaeva, G.A.; Gohil, S.; Jansson, K.; Herbst, K.; Brorson, M.; Kessler, V.G. Solution interaction of O-donor ligand metal complexes with thiocarbonyl compounds—a new general route to metal sulfide materials. New J. Chem. 2003, 27, 1059–1064.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413