全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

An Overview of Optimizing Strategies for Flotation Banks

DOI: 10.3390/min2040258

Keywords: air profiling, mass-pull, peak air recovery (PAR), optimization, flotation bank

Full-Text   Cite this paper   Add to My Lib

Abstract:

A flotation bank is a serial arrangement of cells. How to optimally operate a bank remains a challenge. This article reviews three reported strategies: air profiling, mass-pull (froth velocity) profiling and Peak Air Recovery (PAR) profiling. These are all ways of manipulating the recovery profile down a bank, which may be the property being exploited. Mathematical analysis has shown that a flat cell-by-cell recovery profile maximizes the separation of two floatable minerals for a given target bank recovery when the relative floatability is constant down the bank. Available bank survey data are analyzed with respect to recovery profiling. Possible variations on recovery profile to minimize entrainment are discussed.

References

[1]  Lynch, A.J.; Johnson, N.W.; Manlapig, E.V.; Thorne, C.G. Mineral and coal flotation circuits: Their simulation and control. In Developments in Mineral Processing; Fuerstenau, D.W., Ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1981.
[2]  Finch, J.A.; Dobby, G.S. Column Flotation; Pergamon Press: Oxford, UK, 1990.
[3]  Gorain, B. The Effect of Bubble Surface Area Flux on the Kinetics of Flotation and Its Relevance to Scale-upPh.D. Thesis, University of Queensland, Brisbane, Australia, 1998.
[4]  Maldonado, M.; Sbarbaro, D.; Lizama, E. Optimal control of a rougher flotation process based on dynamic programming. Miner. Eng. 2007, 20, 221–232, doi:10.1016/j.mineng.2006.08.015.
[5]  Sbarbaro, D.; Maldonado, M.; Cipriano, A. A two level hierarchical control structure for optimizing a rougher flotation circuit. Seoul, Korea, 6–11 July 2008.
[6]  Rojas, D.; Cipriano, A. Model based predictive control of a rougher flotation circuit considering grade estimation in intermediate cells. DYNA 2011, 166, 37–47.
[7]  Maldonado, M.; Araya, R.; Finch, J. Optimizing flotation bank performance by recovery profiling. Miner. Eng. 2011, 24, 939–943, doi:10.1016/j.mineng.2011.04.014.
[8]  Cooper, M.; Scott, D.; Dahlke, R.; Finch, J.A.; Gomez, C.O. Impact of air distribution profile on banks in a Zn cleaning circuit. CIM Bull. 2004, 97, 1–6.
[9]  Aslan, A.; Boz, H. Effect of air distribution profile on selectivity at zinc cleaner circuit. Miner. Eng. 2010, 23, 885–887, doi:10.1016/j.mineng.2010.07.012.
[10]  Hernandez-Aguilar, J.R.; Reddick, S. Gas dispersion management in a copper/molybdenum separation circuit. In Proceedings ofthe Sixth International Copper-Cobre Conference, Toronto, Canada, 25–30 August 2007.
[11]  Woodburn, E.T.; Austin, L.G.; Stockton, J.B. A froth based flotation kinetic model. Chem. Eng. Res. Des. 1994, 72, 211–226.
[12]  Hadler, K.; Smith, C.D.; Cilliers, J.J. Recovery vs. mass pull: The link to air recovery. Miner. Eng. 2010, 23, 994–1002, doi:10.1016/j.mineng.2010.04.007.
[13]  Hadler, K.; Cilliers, J.J. The relationship between the peak in air recovery and flotation bank performance. Miner. Eng. 2009, 22, 451–455, doi:10.1016/j.mineng.2008.12.004.
[14]  Hadler, K.; Smith, C.; Cilliers, J. Flotation performance improvement by air recovery optimization on roughers and scavengers. In Proceedings of the XXV International Mineral Processing Congress (IMPC), Brisbane, QLD, Australia, 6–10 September; 2010.
[15]  Smith, C.D.; Hadler, K.; Cilliers, J.J. The total air addition and air profile for a flotation bank. Can. Metall. Quart. 2010, 49, 331–336.
[16]  Smith, C.D.; Hadler, K.; Cilliers, J.J. Flotation bank air addition and distribution for optimal performance. Miner. Eng. 2010, 23, 1023–1029, doi:10.1016/j.mineng.2010.05.003.
[17]  Aldrich, C.; Marais, C.; Shean, B.J.; Cilliers, J.J. On-line monitoring and control of froth flotation system systems with machine vision: A review. Int. J. Miner. Process. 2010, 96, 1–13, doi:10.1016/j.minpro.2010.04.005.
[18]  Supomo, A.; Yap, E.; Zheng, X.; Banini, G.; Mosher, J.; Partanen, A. PT Freeport Indonesia’s mass-pull control strategy for rougher flotation. Miner. Eng. 2008, 21, 808–816.
[19]  Figueroa, L.; Peragallo, E.; Gomez, A.; Orrante, F. Determination of rougher froth velocity profiles and their implementation through expert systems. In Proceedings of the VI International Mineral Processing Seminar (Procemin), Santiago, Chile, 2–4 December 2009.
[20]  Gaudin, A.M. Flotation; McGraw Hill: New York, NY, USA, 1957.
[21]  Agar, G.E.; Stratton-Crawley, R.; Bruce, J. Optimizing the design of flotation circuits. Can. Min. Metall. Bull. 1980, 73, 173–181.
[22]  Aris, R. Discrete Dynamic Programming: An Introduction to the Optimization of Staged Processes; Blaisdell Publishing Company: New York, NY, USA, 1964.
[23]  Hadler, K.; Barbian, N.; Cilliers, J.J. The relationship between froth stability and flotation performance down a bank of cells. In Proceedings of XXIII International Mineral Processing Congress, Istanbul, Turkey, 3–8 September; 2006.
[24]  Gomez, C.O.; Finch, J.A. Gas dispersion measurements in flotation cells. Int. J. Miner. Process. 2007, 84, 51–58.
[25]  Neethling, S.J.; Cilliers, J.J. Modelling flotation froths. Int. J. Miner. Process. 2003, 72, 267–287, doi:10.1016/S0301-7516(03)00104-2.
[26]  Zheng, X.; Franzidis, J.P.; Johnson, N.W. An evaluation of different models of water recovery in flotation. Miner. Eng. 2006, 19, 871–882, doi:10.1016/j.mineng.2005.07.021.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413