We present a switchable thermal interface based on an array of discrete liquid droplets initially confined on hydrophilic islands on a substrate. The droplets undergo reversible morphological transition into a continuous liquid film when they are mechanically compressed by an opposing substrate to create low-thermal resistance heat conduction path. We investigate a criterion for reversible switching in terms of hydrophilic pattern size and liquid volume. The dependence of the liquid morphology and rupture distance on the diameter and areal fraction of hydrophilic islands, liquid volumes, as well as loading pressure is also characterized both theoretically and experimentally. The thermal resistance in the on-state is experimentally characterized for ionic liquids, which are promising for practical applications due to their negligible vapor pressure. A life testing setup is constructed to evaluate the reliability of the interface under continued switching conditions at relatively high switching frequencies.
References
[1]
Song, W.; Sutton, M.S.; Talghader, J.J. Thermal contact conductance of actuated interfaces. Appl. Phys. Lett. 2002, 81, 1216–1218, doi:10.1063/1.1499518.
[2]
Cho, J.; Richards, C.; Bahr, D.; Jiao, J.; Richards, R. Evaluation of contacts for a MEMS thermal switch. J. Micromech. Microeng. 2008, 18.
[3]
Ghoshal, U.; Ghoshal, S.; McDowell, C.; Shi, L.; Cordes, S.; Farinelli, M. Enhanced thermoelectric cooling at cold junction interfaces. Appl. Phys. Lett. 2002, 80, 3006–3008.
[4]
Biter, W.; Oh, S.; Hess, S. Electrostatic Switched Radiator for Space Based Thermal Control. In Proceedings of Space Technology and Applications International Forum (STAIF-2002), Albuquerque, NM, USA, 3–6 February 2002; pp. 73–80.
[5]
Xu, J.; Fisher, T.S. Enhancement of thermal interface materials with carbon nanotube arrays. Int. J. Heat Mass Tran. 2006, 49, 1658–1666, doi:10.1016/j.ijheatmasstransfer.2005.09.039.
[6]
Ngo, Q.; Cruden, B.A.; Cassell, A.M.; Sims, G.; Meyyappan, M.; Li, J.; Yang, C.Y. Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays. Nano Lett. 2004, 4, 2403–2407, doi:10.1021/nl048506t.
[7]
Zaho, Y.; Tong, T.; Delzeit, L.; Kashani, A.; Meyyapan, M.; Majumdar, A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B 2006, 24, 331:1–331:5.
[8]
Cha, G.; Ju, Y.S. Reversible thermal interfaces based on microscale dielectric liquid layers. Appl. Phys. Lett. 2009, 94, 211904:1–211904:3.
[9]
de Souza, E.J.; Brinkmann, M.; Mohrdieck, C.; Arzt, E. Enhancement of capillary forces by multiple liquid bridges. Langmuir 2008, 24, 8813–8820.
[10]
de Souza, E.J.; Brinkmann, M.; Mohrdieck, C.; Crosby, A.; Arzt, E. Capillary forces between chemically different substrates. Langmuir 2008, 24, 10161–10168.
[11]
Valkenburg, M.E.V.; Vaughn, R.L.; Williams, M.; Wilkes, J.S. Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 2005, 425, 181–188, doi:10.1016/j.tca.2004.11.013.
[12]
Swatloski, R.P.; Holbrey, J.D.; Rogers, R.D. Ionic liquids are not always green: Hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 2003, 5, 361–363, doi:10.1039/b304400a.