全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Micromachines  2012 

A Digitally Controllable Polymer-Based Microfluidic Mixing Module Array

DOI: 10.3390/mi3020279

Keywords: microfluidic, pump, mix, tesla, valve, integration

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents an integrated digitally controllable microfluidic system for continuous solution supply with a real-time concentration control. This system contains multiple independently operating mixing modules, each integrated with two vortex micropumps, two Tesla valves and a micromixer. The interior surface of the system is made of biocompatible materials using a polymer micro-fabrication process and thus its operation can be applied to chemicals and bio-reagents. In each module, pumping of fluid is achieved by the vortex micropump working with the rotation of a micro-impeller. The downstream fluid mixing is based on mechanical vibrations driven by a lead zirconate titanate ceramic diaphragm actuator located below the mixing chamber. We have conducted experiments to prove that the addition of the micro-pillar structures to the mixing chamber further improves the mixing performance. We also developed a computer-controlled automated driver system to control the real-time fluid mixing and concentration regulation with the mixing module array. This research demonstrates the integration of digitally controllable polymer-based microfluidic modules as a fully functional system, which has great potential in the automation of many bio-fluid handling processes in bio-related applications.

References

[1]  Harrison, D.J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993, 261, 895–897.
[2]  Thorsen, T.; Maerkl, S.J.; Quake, S.R. Microfluidic large-scale integration. Science 2002, 298, 580–584.
[3]  Melin, J.; Quake, S.R. Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 213–231, doi:10.1146/annurev.biophys.36.040306.132646.
[4]  Fettinger, J.C.; Manz, A.; Lüdi, H.; Widmer, H.M. Stacked modules for micro flow systems in chemical analysis: Concept and studies using an enlarged model. Sens. Actuat. B: Chem. 1993, 17, 19–25, doi:10.1016/0925-4005(93)85179-E.
[5]  Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184, doi:10.1146/annurev.matsci.28.1.153.
[6]  van Lintel, H.T.G.; van de Pol, F.C.M.; Bouwstra, S. A piezoelectric micropump based on micromachining of silicon. Sens. Actuat. 1998, 15, 153–167.
[7]  Chen, C.; Santiago, J.G. A planar electroosmotic micropump. J. Microelectromech. Syst. 2002, 11, 672–683, doi:10.1109/JMEMS.2002.805055.
[8]  Unger, M.A.; Chou, H.P.; Thorsen, T.; Scherer, A.; Quake, S.R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288, 113–116.
[9]  Vandelli, N.; Wroblewski, D.; Velonis, M.; Bifano, T. Development of a MEMS microvalve array for fluid flow control. J. Microelectromech. Syst. 1998, 7, 395–403, doi:10.1109/84.735347.
[10]  Bau, H.H.; Zhong, J.; Yi, M. A minute magneto hydro dynamic (MHD) mixer. Sens. Actuat. B: Chem. 2001, 79, 207–215, doi:10.1016/S0925-4005(01)00851-6.
[11]  Stroock, A.D.; Dertinger, S.K.; Ajdari, A.; Mezic, I.; Stone, H.A.; Whitesides, G.M. Chaotic mixer for microchannels. Science 2002, 295, 647–651.
[12]  Bed?, G.; Fannasch, H.; Müller, R. A silicon flow sensor for gases and liquids using AC measurements. Sens. Actuat. A: Phys. 2000, 85, 124–132.
[13]  Dijkstra, M.; de Boer, M.J.; Berenschot, J.W.; Lammerink, T.S.J.; Wiegerink, R.J.; Elwenspoek, M. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels. Sens. Actuat. A: Phys. 2008, 143, 1–6, doi:10.1016/j.sna.2007.12.005.
[14]  Wu, J.; Ye, J. Micro flow sensor based on two closely spaced amperometric sensors. Lab Chip 2005, 5, 1344–1347, doi:10.1039/b509886f.
[15]  Tay, F.E.H. Microfluidics and BioMEMS Applications; Kluwer Academic Publishers: Norwell, MA, USA, 2002.
[16]  Breslauer, D.N.; Lee, P.J.; Lee, L.P. Microfluidics-based systems biology. Mol. Biosyst. 2006, 2, 97–112, doi:10.1039/b515632g.
[17]  DeMello, A.J. Control and detection of chemical reactions in microfluidic systems. Nature 2006, 442, 394–402, doi:10.1038/nature05062.
[18]  Sia, S.K.; Whitesides, G.M. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003, 24, 3563–3576, doi:10.1002/elps.200305584.
[19]  McClain, M.A.; Culbertson, C.T.; Jacobson, S.C.; Allbritton, N.L.; Sims, C.E.; Ramsey, J.M. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 2003, 75, 5646–5655.
[20]  Zare, R.N.; Kim, S. Microfluidic platforms for single-cell analysis. Annu. Rev. Biomed. Eng. 2010, 12, 187–201, doi:10.1146/annurev-bioeng-070909-105238.
[21]  Rohde, C.; Zeng, F.; Gonzalez-Rubio, R.; Angel, M.; Yanik, M. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. USA 2007, 104, 13891–13895.
[22]  Vasdekis, A.E.; Laporte, G.P.J. Enhancing single molecular imaging in optofluidics and microfluidics. Int. J. Mol. Sci. 2011, 12, 5135–5156, doi:10.3390/ijms12085135.
[23]  Warrick, J.; Meyvantsson, I.; Ju, J.; Beebe, D.J. High-throughput microfluidics: improved sample treatment and washing over standard wells. Lab Chip 2007, 7, 316–321, doi:10.1039/b613350a.
[24]  Gomez-Sjoberg, R.; Leyrat, A.A.; Pirone, D.M.; Chen, C.S.; Quake, S.R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 2007, 79, 8557–8563.
[25]  Battersby, B.J.; Trau, M. Novel miniaturized systems in high-throughput screening. Trends Biotechnol. 2002, 20, 167–173, doi:10.1016/S0167-7799(01)01898-4.
[26]  Studer, V.; Pepin, A.; Chen, Y.; Ajdari, A. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 2004, 129, 944–949, doi:10.1039/b408382m.
[27]  Yang, Z.; Matsumoto, S.; Goto, H.; Matsumoto, M.; Maeda, R. Ultrasonic micromixer for microfluidic systems. Sens. Actuat. A: Phys. 2001, 93, 266–272, doi:10.1016/S0924-4247(01)00654-9.
[28]  Rife, J.C.; Bell, M.I.; Horwitz, J.S.; Kabler, M.N.; Auyeung, R.C.Y.; Kim, W.J. Miniature valveless ultrasonic pumps and mixers. Sens. Actuat. A: Phys. 2000, 86, 135–140, doi:10.1016/S0924-4247(00)00433-7.
[29]  Munsondonald, B.R.; Young, Y.; Okiishi, T.H.; Huebsch, W.W. Fundamentals of Fluid Mechanics, 6th ed.; John Wiley & Sons: New York, NY, USA, 2008.
[30]  Nguyen, N.; Wu, Z. Micromixers—A review. J. Micromech. Microeng. 2005, 15, R1–R16, doi:10.1088/0960-1317/15/2/R01.
[31]  Bottausci, F.; Mezic, I.; Meinhart, C.D.; Cardonne, C. Mixing in the shear superposition micromixer: Three-dimensional analysis. Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 1001–1018, doi:10.1098/rsta.2003.1359.
[32]  Chou, H.-P.; Unger, M.A.; Quake, S.R. A microfabricated rotary pump. Biomed. Microdevices 2001, 3, 323–330, doi:10.1023/A:1012412916446.
[33]  Oddy, M.H.; Santiago, J.G.; Mikkelsen, J.C. Electrokinetic instability micromixing. Anal. Chem. 2001, 73, 5822–5832, doi:10.1021/ac0155411.
[34]  Yang, Z.; Goto, H.; Matsumoto, M.; Maeda, R. Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis 2000, 21, 116–119, doi:10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.0.CO;2-Y.
[35]  Tesla, N. Valvular Conduit. U.S. Patent 01329559, 21 February 1916.
[36]  Morris, C.J.; Forster, F.K. Low-order modeling of resonance for fixed-valve micropumps based on first principles. J. Microelectromechan. Syst. 2003, 12, 325–334, doi:10.1109/JMEMS.2003.809965.
[37]  Tuzson, J. Centrifugal Pump Design; John Wiley & Sons: New York, NY, USA, 2000; pp. 61–89.
[38]  Turton, R.K. Rotodynamic Pump Design; Cambridge University Press: New York, NY, USA, 1994; pp. 1–10.
[39]  Lin, C.M.; Lai, Y.S.; Liu, H.P.; Chen, C.Y.; Wo, A.M. Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 2008, 80, 8937–8945.
[40]  Tsai, N.-C.; Sue, C.-Y. Review of MEMS-based drug delivery and dosing systems. Sens. Actuat. A: Phys. 2007, 134, 555–564, doi:10.1016/j.sna.2006.06.014.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413