全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

Major- and Trace-Element Compositions of Indicator Minerals that Occur as Macro- and Megacrysts, and of Xenoliths, from Kimberlites in Northeastern Angola

DOI: 10.3390/min2040318

Keywords: Angola, kimberlite, olivine, garnet, clinopyroxene, diamond, thermobarometry, mantle xenoliths, REE, Sm/Nd isotopes

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, we compare the major- and trace-element compositions of olivine, garnet, and clinopyroxene that occur as single crystals (142 grains), with those derived from xenoliths (51 samples) from six kimberlites in the Lucapa area, northeastern Angola: Tchiuzo, Anomaly 116, Catoca, Alto Cuilo-4, Alto Cuilo-63 and Cucumbi-79. The samples were analyzed using electron probe microanalysis (EPMA) and laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). The results suggest different paragenetic associations for these kimberlites in the Lucapa area. Compositional overlap in some of the macrocryst and mantle xenolith samples indicates a xenocrystic origin for some of those macrocrysts. The presence of mantle xenocrysts suggests the possibility of finding diamond. Geothermobarometric calculations were carried out using EPMA data from xenoliths by applying the program PTEXL.XLT. Additional well calibrated single-clinopyroxene thermobarometric calculations were also applied. Results indicate the underlying mantle experienced different equilibration conditions. Subsequent metasomatic enrichment events also support a hypothesis of different sources for the kimberlites. These findings contribute to a better understanding of the petrogenetic evolution of the kimberlites in northeastern Angola and have important implications for diamond exploration.

References

[1]  ENDIAMA–Empresa Nacional de Diamantes de Angola, E.P. The State Owned Company responsible for the exploration, research, mining, polishing, cutting and trading of Angolan diamonds. History. Available online: http://www.endiama.co.ao/endiama_historia.php# (accessed on 8 July 2012).
[2]  Reis, B. Preliminary note on the distribution and tectonic control of kimberlites in Angola. In Proceedings of the 24th International Geological Congress, Montreal, Canada, 21 August–1 September 1972; 24, pp. 276–281.
[3]  The Israeli Diamond Industry. Diamond news. The Israeli Diamond Industry Portal Newsletter. Available online: http://www.israelidiamond.co.il/english/news.aspx?boneid=918&objid=9920 (accessed on 25 September 2011).
[4]  Mitchell, R.H. Kimberlites, Orangeites, and Related Rocks; Plenum Press: New York, NY, USA, 1995; p. 410.
[5]  Scott Smith, B.H.; Nowicki, T.E.; Russell, J.K.; Webb, K.J.; Mitchell, R.H.; Hetman, C.M.; Harder, M.; Skinner, E.M.W.; Robey, J.V. Kimberlite Terminology and Classification. In Proceedings of the 10th Kimberlite Conference, Bangalore, India, 6–11 February 2012. Abstract Volume, 10IKC-226.
[6]  De Carvalho, H.; Tassinari, C.; Alves, P.H. Geochronological review of the Precambrian in western Angola: Links with Brazil. J. Afr. Earth Sci. 2000, 31, 383–402, doi:10.1016/S0899-5362(00)00095-6.
[7]  Guiraud, R.; Bosworth, W.; Thierry, J.; Delplanque, A. Phanerozoic geological evolution of Northern and Central Africa: An overview. J. Afr. Earth Sci. 2005, 43, 83–143, doi:10.1016/j.jafrearsci.2005.07.017.
[8]  Perevalov, O.V.; Voinovsky, A.S.; Tselikovsky, A.F.; Agueev, Y.L.; Polskoi, F.R.; Khódirev, V.L.; Kondrátiev, A.I. Geology of Angola: Explanatory Notes of the Geological Map at a Scale of 1:1.000.000; Geological Survey of Angola: Luanda, Angola, 1992.
[9]  Egorov, K.N.; Roman’ko, E.F.; Podvysotsky, V.T.; Sablukov, S.M.; Garanin, V.K.; D’yakonov, D.B. New data on kimberlite magmatism in southwestern Angola. Russ. Geol. Geophys. 2007, 48, 323–336, doi:10.1016/j.rgg.2006.08.001.
[10]  Robles-Cruz, S.E.; Escayola, M.; Jackson, S.; Galí, S.; Pervov, V.; Watangua, M.; Gon?alves, A.; Melgarejo, J.C. U-Pb SHRIMP geochronology of zircon from the Catoca kimberlite, Angola: Implications for diamond exploration. Chem. Geol. 2012, 310–311, 137–147.
[11]  Eley, R.; Grütter, H.; Louw, A.; Tunguno, C.; Twidale, J. Exploration Geology of the Luxinga kimberlite Cluster (Angola) with evidence supporting the presence of kimberlite lava. In Proceedings of the 9th Kimberlite Conference, Frankfurt, Germany, 10–15 August 2008. Abstract Volume, 9IKC-A-00166.
[12]  Weis, D.; Kieffer, B.; Maerschalk, C.; Barling, J.; de Jong, J.; Williams, G. A.; Hanano, D.; Pretorius, W.; Mattielli, N.; Scoates, J.S.; Goolaerts, A.; Friedman, R.M.; Mahoney, J.B. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 2006, 7, Q08006:1–Q08006:30.
[13]  Pervov, V.A.; Somov, S.V.; Korshunov, A.V.; Dulapchii, E.V.; Félix, J.T. The Catoca kimberlite pipe, Republic of Angola: A paleovolcanological model. Geol. Ore Deposits 2011, 53, 295–308, doi:10.1134/S1075701511040052.
[14]  Robles-Cruz, S.; Watangua, M.; Melgarejo, J.C.; Galí, S. New insights into the concept of ilmenite as an indicator for diamond exploration, based on kimberlite petrographic analysis. J. Span. Soc. Mineral. Macla 2008, 9, 205–206.
[15]  Pettit, W. Geophysical signatures of some recently discovered large (>40 ha) kimberlite pipes on the Alto Cuilo concession in northeastern Angola. Lithos 2009, 112, S106–S115, doi:10.1016/j.lithos.2009.05.046.
[16]  Robles-Cruz, S.; Watangua, M.; Isidoro, L.; Melgarejo, J.C.; Galí, S.; Olimpio, A. Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond. Lithos 2009, 112, S966–S975, doi:10.1016/j.lithos.2009.05.040.
[17]  Pearson, D.G.; Canil, D.; Shirey, S.B. Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. In The Mantle and Core: Treatise on Geochemistry; Carlson, R.W., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2003; Volume 2, pp. 171–275.
[18]  Pearson, D.G.; Wittig, N. Formation of Archean continental lithosphere and its diamonds: The root of the problem. J. Geol. Soc. 2008, 165, 895–914, doi:10.1144/0016-76492008-003.
[19]  Grütter, H.S.; Gurney, J.J.; Menzies, A.H.; Winter, F. An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 2004, 77, 841–857, doi:10.1016/j.lithos.2004.04.012.
[20]  Morris, T.F.; Sage, R.P.; Ayer, J.A.; Crabtree, D.C. A study in clinopyroxene composition: Implications for kimberlite exploration. Geochem. Explor. Environ. Anal. 2002, 2, 321–331, doi:10.1144/1467-787302-037.
[21]  Ramsay, R.R. Geochemistry of Diamond Indicator Minerals. Ph.D. Thesis, University of Western Australia, Perth, Australia, 1992.
[22]  Stachel, T. EXCEL spreadsheet to do geothermobarometry for mantle assemblages: Developments up to date and recent calibrations in geothermobarometry of mantle rocks based on the PTEXL program written by Thomas K?hler in 1994. University of Alberta, Edmonton, Alberta, Canada, 2011. Unpublished work.
[23]  Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 514–554.
[24]  Nimis, P. Evaluation of diamond potential from the composition of peridotitic chromian diopside. Eur. J. Mineral. 1998, 10, 505–519.
[25]  Mather, K.A.; Pearson, D.G.; McKenzie, D.; Kjarsgaard, B.; Priestley, K. Constraining the depth and thermal history of cratonic lithosphere using peridotite xenolith and xenocryst thermobarometry and seismology. Lithos 2011, 125, 729–742, doi:10.1016/j.lithos.2011.04.003.
[26]  McLean, H.; Banas, A.; Creighton, S.; Whiteford, S.; Luth, R.W.; Stachel, T. Garnet xenocrysts from the Diavik mine, NWT, Canada: Composition, color, and paragenesis. Can. Mineral. 2007, 45, 1131–1145, doi:10.2113/gscanmin.45.5.1131.
[27]  Pearson, D.G. The age of continental roots. Lithos 1999, 48, 171–194, doi:10.1016/S0024-4937(99)00026-2.
[28]  White, S.H.; de Boorder, H.; Smith, C.B. Structural controls of kimberlite and lamproite emplacement. J. Geochem. Explor. 1995, 53, 245–264, doi:10.1016/0375-6742(94)00033-8.
[29]  Jelsma, H.; Barnett, W.; Richards, S.; Lister, G. Tectonic setting of kimberlites. Lithos 2009, 112, 155–165, doi:10.1016/j.lithos.2009.06.030.
[30]  Brett, R.C.; Russell, J.K.; Moss, S. Origin of olivine in kimberlite: Phenocryst or impostor? Lithos 2009, 112, S201–S212, doi:10.1016/j.lithos.2009.04.030.
[31]  Grütter, H.; Latti, D.; Menzies, A. Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J. Petrol. 2006, 47, 801–820.
[32]  Vredevoogd, J.J.; Forbes, W.C. The system diopside–ureyite at 20 kb. Contrib. Mineral. Petrol. 1975, 52, 147–156, doi:10.1007/BF00395011.
[33]  Aschepkov, I.V.; Rotman, A.Y.; Somov, S.V.; Afanasiev, V.P.; Downes, H.; Logvinova, A.M.; Nossyko, S.; Shimupi, J.; Palessky, S.V.; Khmelnikova, O.S.; Vladykin, N.V. Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola. Tectonophysics 2012, 530–531, 128–151.
[34]  Stachel, T.; Viljoen, K.S.; Brey, G.; Harris, J.W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle. Earth Planet. Sci. Lett. 1998, 159, 1–12, doi:10.1016/S0012-821X(98)00064-8.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413