全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Minerals  2012 

EDEEP—An Innovative Process for Improving the Safety of Mining Equipment

DOI: 10.3390/min2040272

Keywords: equipment design, risk assessment, safe design, injury prevention

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fifteen multi-national mining companies are currently members of the Earth Moving Equipment Safety Round Table (EMESRT). Formed in 2006, EMESRT engages with mining equipment manufacturers with the aim of accelerating improvements in the safe design of mining equipment. An initial stage in this process was to communicate industry understanding of the risks in the form of “design philosophies” that describe potential unwanted events in eight hazard categories. A technique for analysing risks associated with operation and maintenance tasks, the Operability and Maintainability Analysis Technique (OMAT), was subsequently developed and trialed. The next step is the EMESRT Design Evaluation for Equipment Procurement (EDEEP) process. The aims of requesting manufacturers to follow this process are to provide equipment purchasers with a common way of assessing how well the issues in the EMESRT Design Philosophies are addressed in the equipment design; and to provide manufacturers with additional information for use during equipment design. The process involves identifying priority tasks based on frequency and severity of the consequences of potential unwanted events identified in the EMESRT Design Philosophies; undertaking a task-based risk assessment of priority tasks in conjunction with site-based personnel; evaluating the effectiveness of control measures; and providing information about safe design features in a standardised format.

References

[1]  Ruff, T.; Coleman, P.; Martini, L. Machine-related injuries in the US mining industry and priorities for safety research. Int. J. Inj. Control Saf. Promot. 2011, 18, 11–20, doi:10.1080/17457300.2010.487154.
[2]  Burgess-Limerick, R.; Steiner, L. Injuries associated with continuous miners, shuttle cars, load-haul-dump, and personnel transport in New South Wales underground coal mines. Min. Technol. 2006, 115, 160–168, doi:10.1179/174328606X151033.
[3]  Cooke, T.; Horberry, T.; Burgess-Limerick, R. Revisiting injury narratives to pinpoint human factor issues associated with surface mobile mining equipment. In Presented at First international conference on Occupational Safety in Transport, Gold Coast, Queensland, Australia, 20-21 September 2012.
[4]  Earth Moving Equipment Safety Round Table Home Page. Available online: http://www.emesrt.org/ (accessed on 26 September 2012).
[5]  Horberry, T.; Sarno, S.; Cooke, T.; Joy, J. Development of the operability and maintainability analysis technique for use with large surface haul trucks. Available online: http://www.acarp.com.au/abstracts.aspx?repId=C17033 (accessed on 26 September 2012).
[6]  Horberry, T.; Cooke, T. Safe and inclusive design of equipment used in the minerals industry. In Designing Inclusive Systems: Designing Inclusion for Real-World Applications; Langdon, P., Ed.; Springer-Verlag: London, UK, 2012; pp. 23–32.
[7]  Cooke, T.; Horberry, T. The operability and maintainability analysis technique: Integrating task and risk analysis in the safe design of industrial equipment. In Contemporary Ergonomics and Human Factors 2011; Anderson, M., Ed.; CRC Press: London, UK, 2011; pp. 3–6.
[8]  Horberry, T.; Burgess-Limerick, R.; Steiner, L. Human Factors for the Design, Operation and Maintenance of Mining Equipment; CRC Press: Boca Raton, FL, USA, 2010.
[9]  Burgess-Limerick, R.; Cotea, C.; Pietrzak, E.; Fleming, P. Human systems integration in defence and civilian industries. Aust. Def. Force J. 2011, 186, 51–60.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413