全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2012 

Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi’s Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus

DOI: 10.3390/pathogens1020102

Keywords: Kaposi’s Sarcoma-Associated Herpesvirus (KSHV), Rhesus Rhadinovirus (RRV), virus entry, endocytosis, actin, microtubule, integrin, cellular signaling, ubiquitination

Full-Text   Cite this paper   Add to My Lib

Abstract:

As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle.

References

[1]  Schneider-Schaulies, J. Cellular receptors for viruses: Links to tropism and pathogenesis. J. Gen. Virol. 2000, 81, 1413–1429.
[2]  Marsh, M.; Helenius, A. Virus entry: Open sesame. Cell 2006, 124, 729–740, doi:10.1016/j.cell.2006.02.007.
[3]  Greene, W.; Kuhne, K.; Ye, F.; Chen, J.; Zhou, F.; Lei, X.; Gao, S.J. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat. Res. 2007, 133, 69–127, doi:10.1007/978-0-387-46816-7_3.
[4]  Chakraborty, S.; Veettil, M.V.; Chandran, B. Kaposi's sarcoma associated herpesvirus entry into target cells. Front. Microbiol. 2012, 3, 6.
[5]  Chandran, B. Early events in Kaposi's sarcoma-associated herpesvirus infection of target cells. J. Virol. 2010, 84, 2188–2199, doi:10.1128/JVI.01334-09.
[6]  Lyman, M.G.; Enquist, L.W. Herpesvirus interactions with the host cytoskeleton. J. Virol. 2009, 83, 2058–2066, doi:10.1128/JVI.01718-08.
[7]  Van den Broeke, C.; Favoreel, H.W. Actin' up: Herpesvirus interactions with rho gtpase signaling. Viruses 2011, 3, 278–292.
[8]  Roberts, K.L.; Baines, J.D. Actin in herpesvirus infection. Viruses 2011, 3, 336–346, doi:10.3390/v3040336.
[9]  Janmey, P.A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 1998, 78, 763–781.
[10]  Hahn, A.S.; Kaufmann, J.K.; Wies, E.; Naschberger, E.; Panteleev-Ivlev, J.; Schmidt, K.; Holzer, A.; Schmidt, M.; Chen, J.; Konig, S.; Ensser, A.; Myoung, J.; Brockmeyer, N.H.; Sturzl, M.; Fleckenstein, B.; Neipel, F. The ephrin receptor tyrosine kinase a2 is a cellular receptor for kaposi's sarcoma-associated herpesvirus. Nat. Med. 2012, 18, 961–966, doi:10.1038/nm.2805.
[11]  Gottlieb, A.I.; Langille, B.L.; Wong, M.K.; Kim, D.W. Structure and function of the endothelial cytoskeleton. Lab. Invest. 1991, 65, 123–137.
[12]  Collins, A.; Warrington, A.; Taylor, K.A.; Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 2011, 21, 1167–1175, doi:10.1016/j.cub.2011.05.048.
[13]  Jamora, C.; Fuchs, E. Intercellular adhesion, signalling and the cytoskeleton. Nat. Cell Biol. 2002, 4, E101–108, doi:10.1038/ncb0402-e101.
[14]  Downing, K.H.; Nogales, E. Tubulin and microtubule structure. Curr. Opin. Cell Biol. 1998, 10, 16–22, doi:10.1016/S0955-0674(98)80082-3.
[15]  Dohner, K.; Sodeik, B. The role of the cytoskeleton during viral infection. Curr. Top. Microbiol. Immunol. 2005, 285, 67–108, doi:10.1007/3-540-26764-6_3.
[16]  Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem. 2000, 69, 277–302, doi:10.1146/annurev.biochem.69.1.277.
[17]  Taylor, M.P.; Koyuncu, O.O.; Enquist, L.W. Subversion of the actin cytoskeleton during viral infection. Nat. Rev. Microbiol. 2011, 9, 427–439, doi:10.1038/nrmicro2574.
[18]  Schmidt, A.; Hall, A. Guanine nucleotide exchange factors for rho gtpases: Turning on the switch. Genes Dev. 2002, 16, 1587–1609, doi:10.1101/gad.1003302.
[19]  Miller, A.L.; Bement, W.M. Regulation of cytokinesis by rho gtpase flux. Nat. Cell Biol. 2009, 11, 71–77, doi:10.1038/ncb1814.
[20]  Bishop, A.L.; Hall, A. Rho gtpases and their effector proteins. Biochem. J. 2000, 348 Pt 2, 241–255, doi:10.1042/0264-6021:3480241.
[21]  Anitei, M.; Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat. Cell Biol. 2012, 14, 11–19, doi:10.1038/ncb2409.
[22]  de Forges, H.; Bouissou, A.; Perez, F. Interplay between microtubule dynamics and intracellular organization. Int. J. Biochem. Cell Biol. 2012, 44, 266–274, doi:10.1016/j.biocel.2011.11.009.
[23]  Westermann, S.; Weber, K. Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 2003, 4, 938–947, doi:10.1038/nrm1260.
[24]  Wloga, D.; Gaertig, J. Post-translational modifications of microtubules. J. Cell Sci. 2010, 123, 3447–3455, doi:10.1242/jcs.063727.
[25]  Dohner, K.; Nagel, C.H.; Sodeik, B. Viral stop-and-go along microtubules: Taking a ride with dynein and kinesins. Trends Microbiol. 2005, 13, 320–327, doi:10.1016/j.tim.2005.05.010.
[26]  Gee, M.A.; Heuser, J.E.; Vallee, R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 1997, 390, 636–639, doi:10.1038/37663.
[27]  Howard, J.; Hudspeth, A.J.; Vale, R.D. Movement of microtubules by single kinesin molecules. Nature 1989, 342, 154–158, doi:10.1038/342154a0.
[28]  Kon, T.; Nishiura, M.; Ohkura, R.; Toyoshima, Y.Y.; Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four aaa modules of cytoplasmic dynein. Biochemistry 2004, 43, 11266–11274.
[29]  Amorim, M.J.; Bruce, E.A.; Read, E.K.; Foeglein, A.; Mahen, R.; Stuart, A.D.; Digard, P. A rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza a virus viral rna. J. Virol. 2011, 85, 4143–4156, doi:10.1128/JVI.02606-10.
[30]  Chambers, R.; Takimoto, T. Trafficking of sendai virus nucleocapsids is mediated by intracellular vesicles. PLoS One 2010, 5, e10994, doi:10.1371/journal.pone.0010994.
[31]  Diefenbach, R.J.; Miranda-Saksena, M.; Douglas, M.W.; Cunningham, A.L. Transport and egress of herpes simplex virus in neurons. Rev. Med. Virol. 2008, 18, 35–51, doi:10.1002/rmv.560.
[32]  Lehmann, M.; Milev, M.P.; Abrahamyan, L.; Yao, X.J.; Pante, N.; Mouland, A.J. Intracellular transport of human immunodeficiency virus type 1 genomic rna and viral production are dependent on dynein motor function and late endosome positioning. J. Biol. Chem. 2009, 284, 14572–14585.
[33]  Leopold, P.L.; Kreitzer, G.; Miyazawa, N.; Rempel, S.; Pfister, K.K.; Rodriguez-Boulan, E.; Crystal, R.G. Dynein- and microtubule-mediated translocation of adenovirus serotype 5 occurs after endosomal lysis. Hum. Gene Ther. 2000, 11, 151–165, doi:10.1089/10430340050016238.
[34]  Ogawa-Goto, K.; Tanaka, K.; Gibson, W.; Moriishi, E.; Miura, Y.; Kurata, T.; Irie, S.; Sata, T. Microtubule network facilitates nuclear targeting of human cytomegalovirus capsid. J. Virol. 2003, 77, 8541–8547.
[35]  Sodeik, B.; Ebersold, M.W.; Helenius, A. Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J. Cell Biol. 1997, 136, 1007–1021, doi:10.1083/jcb.136.5.1007.
[36]  Su, Y.; Qiao, W.; Guo, T.; Tan, J.; Li, Z.; Chen, Y.; Li, X.; Li, Y.; Zhou, J.; Chen, Q. Microtubule-dependent retrograde transport of bovine immunodeficiency virus. Cell. Microbiol. 2010, 12, 1098–1107, doi:10.1111/j.1462-5822.2010.01453.x.
[37]  Suomalainen, M.; Nakano, M.Y.; Keller, S.; Boucke, K.; Stidwill, R.P.; Greber, U.F. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell Biol. 1999, 144, 657–672, doi:10.1083/jcb.144.4.657.
[38]  Salmikangas, P.; van der Ven, P.F.; Lalowski, M.; Taivainen, A.; Zhao, F.; Suila, H.; Schroder, R.; Lappalainen, P.; Furst, D.O.; Carpen, O. Myotilin, the limb-girdle muscular dystrophy 1a (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Mol. Genet. 2003, 12, 189–203, doi:10.1093/hmg/ddg020.
[39]  Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys. 2011, 40, 169–186, doi:10.1146/annurev-biophys-042910-155359.
[40]  Welch, M.D.; Mullins, R.D. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 2002, 18, 247–288, doi:10.1146/annurev.cellbio.18.040202.112133.
[41]  Gill, M.B.; Edgar, R.; May, J.S.; Stevenson, P.G. A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread. PLoS One 2008, 3, e1808, doi:10.1371/journal.pone.0001808.
[42]  Olson, E.N.; Nordheim, A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell. Biol. 2010, 11, 353–365, doi:10.1038/nrm2890.
[43]  Bloemink, M.J.; Geeves, M.A. Shaking the myosin family tree: Biochemical kinetics defines four types of myosin motor. Semin. Cell Dev. Biol. 2011, 22, 961–967, doi:10.1016/j.semcdb.2011.09.015.
[44]  Sweeney, H.L.; Houdusse, A. Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 2010, 39, 539–557, doi:10.1146/annurev.biophys.050708.133751.
[45]  Hartman, M.A.; Finan, D.; Sivaramakrishnan, S.; Spudich, J.A. Principles of unconventional myosin function and targeting. Annu. Rev. Cell Dev. Biol. 2011, 27, 133–155.
[46]  Cramer, L.P. Myosin vi: Roles for a minus end-directed actin motor in cells. J. Cell. Biol. 2000, 150, F121–126, doi:10.1083/jcb.150.6.F121.
[47]  Greber, U.F.; Way, M. A superhighway to virus infection. Cell 2006, 124, 741–754.
[48]  Schelhaas, M.; Shah, B.; Holzer, M.; Blattmann, P.; Kuhling, L.; Day, P.M.; Schiller, J.T.; Helenius, A. Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog. 2012, 8, e1002657, doi:10.1371/journal.ppat.1002657.
[49]  Li, E.; Stupack, D.; Bokoch, G.M.; Nemerow, G.R. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by rho family gtpases. J. Virol. 1998, 72, 8806–8812.
[50]  Goldman, R.D.; Khuon, S.; Chou, Y.H.; Opal, P.; Steinert, P.M. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell. Biol. 1996, 134, 971–983, doi:10.1083/jcb.134.4.971.
[51]  Herrmann, H.; Aebi, U. Intermediate filaments and their associates: Multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr. Opin. Cell Biol. 2000, 12, 79–90, doi:10.1016/S0955-0674(99)00060-5.
[52]  Watts, N.R.; Jones, L.N.; Cheng, N.; Wall, J.S.; Parry, D.A.; Steven, A.C. Cryo-electron microscopy of trichocyte (hard alpha-keratin) intermediate filaments reveals a low-density core. J. Struct. Biol. 2002, 137, 109–118, doi:10.1006/jsbi.2002.4469.
[53]  Strelkov, S.V.; Herrmann, H.; Aebi, U. Molecular architecture of intermediate filaments. Bioessays 2003, 25, 243–251, doi:10.1002/bies.10246.
[54]  Roizman, B.; Sears, E. Herpes simplex viruses and their replication. In Fundamental virology, 3rd; Fields B.N.;, Knipe, D.M.; Howley, P.M., Eds.; Lippincott-Raven: Philadephia, 1996; pp. 1043–1107.
[55]  Mettenleiter, T.C. Herpesvirus assembly and egress. J. Virol. 2002, 76, 1537–1547, doi:10.1128/JVI.76.4.1537-1547.2002.
[56]  Spear, P.G.; Longnecker, R. Herpesvirus entry: An update. J. Virol. 2003, 77, 10179–10185, doi:10.1128/JVI.77.19.10179-10185.2003.
[57]  Longnecker, R.; Neipel, F. Introduction to the human gamma-herpesviruses. In Human herpesviruses: Biology, therapy, and immunoprophylaxis; Arvin, A., Campadelli-Fiume, G., Mocarski, E., Moore, P.S., Roizman, B., Whitley, R., Yamanishi, K., Eds.; Cambridge, 2007.
[58]  Barton, E.; Mandal, P.; Speck, S.H. Pathogenesis and host control of gammaherpesviruses: Lessons from the mouse. Annu. Rev. Immunol. 2011, 29, 351–397, doi:10.1146/annurev-immunol-072710-081639.
[59]  Bechtel, J.T.; Liang, Y.; Hvidding, J.; Ganem, D. Host range of kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol. 2003, 77, 6474–6481, doi:10.1128/JVI.77.11.6474-6481.2003.
[60]  Sarid, R.; Gao, S.J. Viruses and human cancer: From detection to causality. Cancer Lett. 2011, 305, 218–227, doi:10.1016/j.canlet.2010.09.011.
[61]  Ye, F.; Lei, X.; Gao, S.J. Mechanisms of kaposi's sarcoma-associated herpesvirus latency and reactivation. Adv. Virol. 2011, 2011, 193860.
[62]  Cai, Q.; Verma, S.C.; Lu, J.; Robertson, E.S. Molecular biology of kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv. Virus Res. 2010, 78, 87–142, doi:10.1016/B978-0-12-385032-4.00003-3.
[63]  Speck, S.H.; Ganem, D. Viral latency and its regulation: Lessons from the gamma-herpesviruses. Cell Host Microbe 2010, 8, 100–115, doi:10.1016/j.chom.2010.06.014.
[64]  Mesri, E.A.; Cesarman, E.; Boshoff, C. Kaposi's sarcoma and its associated herpesvirus. Nat. Rev. Cancer 2010, 10, 707–719.
[65]  Scadden, D.T. Aids-related malignancies. Annu. Rev. Med. 2003, 54, 285–303, doi:10.1146/annurev.med.54.101601.152143.
[66]  Desrosiers, R.C.; Sasseville, V.G.; Czajak, S.C.; Zhang, X.; Mansfield, K.G.; Kaur, A.; Johnson, R.P.; Lackner, A.A.; Jung, J.U. A herpesvirus of rhesus monkeys related to the human kaposi's sarcoma-associated herpesvirus. J. Virol. 1997, 71, 9764–9769.
[67]  Searles, R.P.; Bergquam, E.P.; Axthelm, M.K.; Wong, S.W. Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol. 1999, 73, 3040–3053.
[68]  Wong, S.W.; Bergquam, E.P.; Swanson, R.M.; Lee, F.W.; Shiigi, S.M.; Avery, N.A.; Fanton, J.W.; Axthelm, M.K. Induction of b cell hyperplasia in simian immunodeficiency virus-infected rhesus macaques with the simian homologue of kaposi's sarcoma-associated herpesvirus. J. Exp. Med. 1999, 190, 827–840, doi:10.1084/jem.190.6.827.
[69]  Orzechowska, B.U.; Powers, M.F.; Sprague, J.; Li, H.; Yen, B.; Searles, R.P.; Axthelm, M.K.; Wong, S.W. Rhesus macaque rhadinovirus-associated non-hodgkin lymphoma: Animal model for KSHV-associated malignancies. Blood 2008, 112, 4227–4234, doi:10.1182/blood-2008-04-151498.
[70]  Coutsinos, Z.; Absi, Z.; Henin, Y.; Guillet, J.G.; Launay, O. Designing an effective aids vaccine: Strategies and current status. Rev. Med. Interne. 2008, 29, 632–641, doi:10.1016/j.revmed.2007.12.006.
[71]  Dimitrov, D.S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2004, 2, 109–122, doi:10.1038/nrmicro817.
[72]  Heldwein, E.E.; Krummenacher, C. Entry of herpesviruses into mammalian cells. Cell. Mol. Life Sci. 2008, 65, 1653–1668, doi:10.1007/s00018-008-7570-z.
[73]  Claesson-Welsh, L.; Spear, P.G. Oligomerization of herpes simplex virus glycoprotein b. J. Virol. 1986, 60, 803–806.
[74]  Pertel, P.E. Human herpesvirus 8 glycoprotein b (gb), gh, and gl can mediate cell fusion. J. Virol. 2002, 76, 4390–4400, doi:10.1128/JVI.76.9.4390-4400.2002.
[75]  Russo, J.J.; Bohenzky, R.A.; Chien, M.C.; Chen, J.; Yan, M.; Maddalena, D.; Parry, J.P.; Peruzzi, D.; Edelman, I.S.; Chang, Y.; Moore, P.S. Nucleotide sequence of the kaposi sarcoma-associated herpesvirus (hhv8). Proc. Natl. Acad. Sci. USA 1996, 93, 14862–14867.
[76]  Zhu, L.; Puri, V.; Chandran, B. Characterization of human herpesvirus-8 k8.1a/b glycoproteins by monoclonal antibodies. Virology 1999, 262, 237–249, doi:10.1006/viro.1999.9900.
[77]  Shin, Y.C.; Desrosiers, R.C. Rhesus monkey rhadinovirus orf57 induces gh and gl glycoprotein expression through posttranscriptional accumulation of target mrnas. J. Virol. 2011, 85, 7810–7817, doi:10.1128/JVI.00493-11.
[78]  Bilello, J.P.; Morgan, J.S.; Desrosiers, R.C. Extreme dependence of gh and gl expression on orf57 and association with highly unusual codon usage in rhesus monkey rhadinovirus. J. Virol. 2008, 82, 7231–7237, doi:10.1128/JVI.00564-08.
[79]  Alexander, L.; Denekamp, L.; Knapp, A.; Auerbach, M.R.; Damania, B.; Desrosiers, R.C. The primary sequence of rhesus monkey rhadinovirus isolate 26–95: Sequence similarities to kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J. Virol. 2000, 74, 3388–3398, doi:10.1128/JVI.74.7.3388-3398.2000.
[80]  Shin, Y.C.; Jones, L.R.; Manrique, J.; Lauer, W.; Carville, A.; Mansfield, K.G.; Desrosiers, R.C. Glycoprotein gene sequence variation in rhesus monkey rhadinovirus. Virology 2010, 400, 175–186.
[81]  Hutt-Fletcher, L.M. Epstein-barr virus entry. J. Virol. 2007, 81, 7825–7832, doi:10.1128/JVI.00445-07.
[82]  Connolly, S.A.; Jackson, J.O.; Jardetzky, T.S.; Longnecker, R. Fusing structure and function: A structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 2011, 9, 369–381, doi:10.1038/nrmicro2548.
[83]  Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952, doi:10.1101/cshperspect.a004952.
[84]  Zhu, W.; Li, J.; Liang, G. How does cellular heparan sulfate function in viral pathogenicity? Biomed. Environ. Sci. 2011, 24, 81–87.
[85]  Shukla, D.; Spear, P.G. Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry. J. Clin. Invest. 2001, 108, 503–510.
[86]  WuDunn, D.; Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 1989, 63, 52–58.
[87]  Shieh, M.T.; WuDunn, D.; Montgomery, R.I.; Esko, J.D.; Spear, P.G. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 1992, 116, 1273–1281, doi:10.1083/jcb.116.5.1273.
[88]  Shukla, D.; Liu, J.; Blaiklock, P.; Shworak, N.W.; Bai, X.; Esko, J.D.; Cohen, G.H.; Eisenberg, R.J.; Rosenberg, R.D.; Spear, P.G. A novel role for 3-o-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999, 99, 13–22, doi:10.1016/S0092-8674(00)80058-6.
[89]  O'Donnell, C.D.; Shukla, D. The importance of heparan sulfate in herpesvirus infection. Virol. Sin. 2008, 23, 383–393, doi:10.1007/s12250-008-2992-1.
[90]  Akula, S.M.; Pramod, N.P.; Wang, F.Z.; Chandran, B. Human herpesvirus 8 envelope-associated glycoprotein b interacts with heparan sulfate-like moieties. Virology 2001, 284, 235–249.
[91]  Akula, S.M.; Wang, F.Z.; Vieira, J.; Chandran, B. Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology 2001, 282, 245–255, doi:10.1006/viro.2000.0851.
[92]  Hahn, A.; Birkmann, A.; Wies, E.; Dorer, D.; Mahr, K.; Sturzl, M.; Titgemeyer, F.; Neipel, F. Kaposi's sarcoma-associated herpesvirus gh/gl: Glycoprotein export and interaction with cellular receptors. J. Virol. 2009, 83, 396–407, doi:10.1128/JVI.01170-08.
[93]  Wang, F.Z.; Akula, S.M.; Pramod, N.P.; Zeng, L.; Chandran, B. Human herpesvirus 8 envelope glycoprotein K8.1a interaction with the target cells involves heparan sulfate. J. Virol. 2001, 75, 7517–7527, doi:10.1128/JVI.75.16.7517-7527.2001.
[94]  Birkmann, A.; Mahr, K.; Ensser, A.; Yaguboglu, S.; Titgemeyer, F.; Fleckenstein, B.; Neipel, F. Cell surface heparan sulfate is a receptor for human herpesvirus 8 and interacts with envelope glycoprotein K8.1. J. Virol. 2001, 75, 11583–11593, doi:10.1128/JVI.75.23.11583-11593.2001.
[95]  Luna, R.E.; Zhou, F.; Baghian, A.; Chouljenko, V.; Forghani, B.; Gao, S.J.; Kousoulas, K.G. Kaposi’s sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J. Virol. 2004, 78, 6389–6398, doi:10.1128/JVI.78.12.6389-6398.2004.
[96]  Zhang, W.; Zhou, F.; Greene, W.; Gao, S.J. Rhesus rhadinovirus infection of rhesus fibroblasts occurs through clathrin-mediated endocytosis. J. Virol. 2010, 84, 11709–11717, doi:10.1128/JVI.01429-10.
[97]  Grove, J.; Marsh, M. The cell biology of receptor-mediated virus entry. J. Cell Biol. 2011, 195, 1071–1082, doi:10.1083/jcb.201108131.
[98]  Jha, N.K.; Latinovic, O.; Martin, E.; Novitskiy, G.; Marin, M.; Miyauchi, K.; Naughton, J.; Young, J.A.; Melikyan, G.B. Imaging single retrovirus entry through alternative receptor isoforms and intermediates of virus-endosome fusion. PLoS Pathog. 2011, 7, e1001260, doi:10.1371/journal.ppat.1001260.
[99]  Lin, G.; Simmons, G.; Pohlmann, S.; Baribaud, F.; Ni, H.; Leslie, G.J.; Haggarty, B.S.; Bates, P.; Weissman, D.; Hoxie, J.A.; Doms, R.W. Differential n-linked glycosylation of human immunodeficiency virus and ebola virus envelope glycoproteins modulates interactions with dc-sign and dc-signr. J. Virol. 2003, 77, 1337–1346.
[100]  Alvarez, C.P.; Lasala, F.; Carrillo, J.; Muniz, O.; Corbi, A.L.; Delgado, R. C-type lectins dc-sign and l-sign mediate cellular entry by ebola virus in cis and in trans. J. Virol. 2002, 76, 6841–6844, doi:10.1128/JVI.76.13.6841-6844.2002.
[101]  Halary, F.; Amara, A.; Lortat-Jacob, H.; Messerle, M.; Delaunay, T.; Houles, C.; Fieschi, F.; Arenzana-Seisdedos, F.; Moreau, J.F.; Dechanet-Merville, J. Human cytomegalovirus binding to dc-sign is required for dendritic cell infection and target cell trans-infection. Immunity 2002, 17, 653–664, doi:10.1016/S1074-7613(02)00447-8.
[102]  Tassaneetrithep, B.; Burgess, T.H.; Granelli-Piperno, A.; Trumpfheller, C.; Finke, J.; Sun, W.; Eller, M.A.; Pattanapanyasat, K.; Sarasombath, S.; Birx, D.L.; Steinman, R.M.; Schlesinger, S.; Marovich, M.A. Dc-sign (cd209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 2003, 197, 823–829, doi:10.1084/jem.20021840.
[103]  Kwon, D.S.; Gregorio, G.; Bitton, N.; Hendrickson, W.A.; Littman, D.R. Dc-sign-mediated internalization of hiv is required for trans-enhancement of t cell infection. Immunity 2002, 16, 135–144, doi:10.1016/S1074-7613(02)00259-5.
[104]  Kerur, N.; Veettil, M.V.; Sharma-Walia, N.; Sadagopan, S.; Bottero, V.; Paul, A.G.; Chandran, B. Characterization of entry and infection of monocytic thp-1 cells by Kaposi's sarcoma associated herpesvirus (KSHV): Role of heparan sulfate, dc-sign, integrins and signaling. Virology 2010, 406, 103–116, doi:10.1016/j.virol.2010.07.012.
[105]  Rappocciolo, G.; Hensler, H.R.; Jais, M.; Reinhart, T.A.; Pegu, A.; Jenkins, F.J.; Rinaldo, C.R. Human herpesvirus 8 infects and replicates in primary cultures of activated b lymphocytes through dc-sign. J. Virol. 2008, 82, 4793–4806, doi:10.1128/JVI.01587-07.
[106]  Rappocciolo, G.; Jenkins, F.J.; Hensler, H.R.; Piazza, P.; Jais, M.; Borowski, L.; Watkins, S.C.; Rinaldo, C.R., Jr. Dc-sign is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J. Immunol. 2006, 176, 1741–1749.
[107]  Jarousse, N.; Chandran, B.; Coscoy, L. Lack of heparan sulfate expression in b-cell lines: Implications for kaposi's sarcoma-associated herpesvirus and murine gammaherpesvirus 68 infections. J. Virol. 2008, 82, 12591–12597, doi:10.1128/JVI.01167-08.
[108]  Ye, F.; Kim, C.; Ginsberg, M.H. Reconstruction of integrin activation. Blood 2012, 119, 26–33, doi:10.1182/blood-2011-04-292128.
[109]  Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science 1999, 285, 1028–1032, doi:10.1126/science.285.5430.1028.
[110]  Stewart, P.L.; Nemerow, G.R. Cell integrins: Commonly used receptors for diverse viral pathogens. Trends Microbiol. 2007, 15, 500–507.
[111]  Akula, S.M.; Pramod, N.P.; Wang, F.Z.; Chandran, B. Integrin alpha3beta1 (cd 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 2002, 108, 407–419, doi:10.1016/S0092-8674(02)00628-1.
[112]  Plow, E.F.; Haas, T.A.; Zhang, L.; Loftus, J.; Smith, J.W. Ligand binding to integrins. J. Biol. Chem. 2000, 275, 21785–21788.
[113]  Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin ligands at a glance. J. Cell Sci. 2006, 119, 3901–3903, doi:10.1242/jcs.03098.
[114]  Wang, F.Z.; Akula, S.M.; Sharma-Walia, N.; Zeng, L.; Chandran, B. Human herpesvirus 8 envelope glycoprotein b mediates cell adhesion via its rgd sequence. J. Virol. 2003, 77, 3131–3147, doi:10.1128/JVI.77.5.3131-3147.2003.
[115]  Veettil, M.V.; Sadagopan, S.; Sharma-Walia, N.; Wang, F.Z.; Raghu, H.; Varga, L.; Chandran, B. Kaposi's sarcoma-associated herpesvirus forms a multimolecular complex of integrins (alphavbeta5, alphavbeta3, and alpha3beta1) and cd98-xct during infection of human dermal microvascular endothelial cells, and cd98-xct is essential for the postentry stage of infection. J. Virol. 2008, 82, 12126–12144, doi:10.1128/JVI.01146-08.
[116]  Inoue, N.; Winter, J.; Lal, R.B.; Offermann, M.K.; Koyano, S. Characterization of entry mechanisms of human herpesvirus 8 by using an rta-dependent reporter cell line. J. Virol. 2003, 77, 8147–8152, doi:10.1128/JVI.77.14.8147-8152.2003.
[117]  Kaleeba, J.A.; Berger, E.A. Broad target cell selectivity of kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry. Virology 2006, 354, 7–14, doi:10.1016/j.virol.2006.06.009.
[118]  Garrigues, H.J.; Rubinchikova, Y.E.; Dipersio, C.M.; Rose, T.M. Integrin alphavbeta3 binds to the rgd motif of glycoprotein b of kaposi's sarcoma-associated herpesvirus and functions as an rgd-dependent entry receptor. J. Virol. 2008, 82, 1570–1580, doi:10.1128/JVI.01673-07.
[119]  Rahman, S.; Aitken, A.; Flynn, G.; Formstone, C.; Savidge, G.F. Modulation of rgd sequence motifs regulates disintegrin recognition of alphaiib beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, n-terminal to the rgd sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by mn2+ cation. Biochem. J. 1998, 335 Pt 2, 247–257.
[120]  Miao, H.; Li, D.Q.; Mukherjee, A.; Guo, H.; Petty, A.; Cutter, J.; Basilion, J.P.; Sedor, J.; Wu, J.; Danielpour, D.; Sloan, A.E.; Cohen, M.L.; Wang, B. Epha2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with akt. Cancer Cell 2009, 16, 9–20, doi:10.1016/j.ccr.2009.04.009.
[121]  Pasquale, E.B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 2008, 133, 38–52, doi:10.1016/j.cell.2008.03.011.
[122]  Nakamoto, M.; Bergemann, A.D. Diverse roles for the eph family of receptor tyrosine kinases in carcinogenesis. Microsc. Res. Tech. 2002, 59, 58–67, doi:10.1002/jemt.10177.
[123]  Aasheim, H.C.; Munthe, E.; Funderud, S.; Smeland, E.B.; Beiske, K.; Logtenberg, T. A splice variant of human ephrin-a4 encodes a soluble molecule that is secreted by activated human b lymphocytes. Blood 2000, 95, 221–230.
[124]  Naranatt, P.P.; Akula, S.M.; Chandran, B. Characterization of gamma2-human herpesvirus-8 glycoproteins gh and gl. Arch. Virol. 2002, 147, 1349–1370, doi:10.1007/s00705-002-0813-7.
[125]  Chakraborty, S.; Veettil, M.V.; Bottero, V.; Chandran, B. Kaposi's sarcoma-associated herpesvirus interacts with ephrina2 receptor to amplify signaling essential for productive infection. Proc. Natl. Acad. Sci. USA 2012, 109, E1163–1172, doi:10.1073/pnas.1119592109.
[126]  He, M.; Zhang, W.; Bakken, T.; Schutten, M.; Toth, Z.; Jung, J.U.; Gill, P.; Cannon, M.; Gao, S.J. Cancer angiogenesis induced by kaposi's sarcoma-associated herpesvirus is mediated by ezh2. Cancer Res. 2012, 72, 3582–3592, doi:10.1158/0008-5472.CAN-11-2876.
[127]  Tsuchiya, S.; Kobayashi, Y.; Goto, Y.; Okumura, H.; Nakae, S.; Konno, T.; Tada, K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982, 42, 1530–1536.
[128]  Lo, M.; Wang, Y.Z.; Gout, P.W. The x(c)- cystine/glutamate antiporter: A potential target for therapy of cancer and other diseases. J. Cell Physiol. 2008, 215, 593–602, doi:10.1002/jcp.21366.
[129]  Kaleeba, J.A.; Berger, E.A. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: Cystine transporter xCT. Science 2006, 311, 1921–1924, doi:10.1126/science.1120878.
[130]  Sieczkarski, S.B.; Whittaker, G.R. Dissecting virus entry via endocytosis. J. Gen. Virol. 2002, 83, 1535–1545.
[131]  Nemerow, G.R.; Cooper, N.R. Early events in the infection of human b lymphocytes by epstein-barr virus: The internalization process. Virology 1984, 132, 186–198, doi:10.1016/0042-6822(84)90102-8.
[132]  Miller, N.; Hutt-Fletcher, L.M. Epstein-barr virus enters b cells and epithelial cells by different routes. J. Virol. 1992, 66, 3409–3414.
[133]  Szakonyi, G.; Klein, M.G.; Hannan, J.P.; Young, K.A.; Ma, R.Z.; Asokan, R.; Holers, V.M.; Chen, X.S. Structure of the epstein-barr virus major envelope glycoprotein. Nat. Struct. Mol. Biol. 2006, 13, 996–1001, doi:10.1038/nsmb1161.
[134]  Seigneurin, J.M.; Vuillaume, M.; Lenoir, G.; De-The, G. Replication of epstein-barr virus: Ultrastructural and immunofluorescent studies of p3hr1-superinfected raji cells. J. Virol. 1977, 24, 836–845.
[135]  Akula, S.M.; Naranatt, P.P.; Walia, N.S.; Wang, F.Z.; Fegley, B.; Chandran, B. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol. 2003, 77, 7978–7990.
[136]  Greene, W.; Gao, S.J. Actin dynamics regulate multiple endosomal steps during kaposi's sarcoma-associated herpesvirus entry and trafficking in endothelial cells. PLoS Pathog. 2009, 5, e1000512, doi:10.1371/journal.ppat.1000512.
[137]  Raghu, H.; Sharma-Walia, N.; Veettil, M.V.; Sadagopan, S.; Chandran, B. Kaposi's sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells. J. Virol. 2009, 83, 4895–4911, doi:10.1128/JVI.02498-08.
[138]  Brandenburg, B.; Zhuang, X. Virus trafficking - learning from single-virus tracking. Nat. Rev. Microbiol. 2007, 5, 197–208, doi:10.1038/nrmicro1615.
[139]  Smith, G.A.; Enquist, L.W. Break ins and break outs: Viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol. 2002, 18, 135–161, doi:10.1146/annurev.cellbio.18.012502.105920.
[140]  Greene, W.; Zhang, W.; He, M.; Witt, C.; Ye, F.; Gao, S.J. The ubiquitin/proteasome system mediates entry and endosomal trafficking of kaposi's sarcoma-associated herpesvirus in endothelial cells. PLoS Pathog. 2012, 8, e1002703, doi:10.1371/journal.ppat.1002703.
[141]  Zhang, W.; Greene, W.; Gao, S.J. Microtubule- and dynein-dependent nuclear trafficking of rhesus rhadinovirus in rhesus fibroblasts. J. Virol. 2012, 86, 599–604, doi:10.1128/JVI.06129-11.
[142]  Benmerah, A.; Bayrou, M.; Cerf-Bensussan, N.; Dautry-Varsat, A. Inhibition of clathrin-coated pit assembly by an eps15 mutant. J. Cell Sci. 1999, 112 Pt 9, 1303–1311.
[143]  Benmerah, A.; Lamaze, C.; Begue, B.; Schmid, S.L.; Dautry-Varsat, A.; Cerf-Bensussan, N. Ap-2/eps15 interaction is required for receptor-mediated endocytosis. J. Cell Biol. 1998, 140, 1055–1062, doi:10.1083/jcb.140.5.1055.
[144]  Naranatt, P.P.; Krishnan, H.H.; Smith, M.S.; Chandran, B. Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via rhoa-gtp-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J. Virol. 2005, 79, 1191–1206, doi:10.1128/JVI.79.2.1191-1206.2005.
[145]  Burkhardt, J.K.; Echeverri, C.J.; Nilsson, T.; Vallee, R.B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 1997, 139, 469–484, doi:10.1083/jcb.139.2.469.
[146]  Burckhardt, C.J.; Suomalainen, M.; Schoenenberger, P.; Boucke, K.; Hemmi, S.; Greber, U.F. Drifting motions of the adenovirus receptor car and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 2011, 10, 105–117, doi:10.1016/j.chom.2011.07.006.
[147]  Medeiros, N.A.; Burnette, D.T.; Forscher, P. Myosin ii functions in actin-bundle turnover in neuronal growth cones. Nat. Cell Biol. 2006, 8, 215–226.
[148]  Lehmann, M.J.; Sherer, N.M.; Marks, C.B.; Pypaert, M.; Mothes, W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 2005, 170, 317–325, doi:10.1083/jcb.200503059.
[149]  Arii, J.; Goto, H.; Suenaga, T.; Oyama, M.; Kozuka-Hata, H.; Imai, T.; Minowa, A.; Akashi, H.; Arase, H.; Kawaoka, Y.; Kawaguchi, Y. Non-muscle myosin iia is a functional entry receptor for herpes simplex virus-1. Nature 2010, 467, 859–862.
[150]  Clement, C.; Tiwari, V.; Scanlan, P.M.; Valyi-Nagy, T.; Yue, B.Y.; Shukla, D. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J. Cell Biol. 2006, 174, 1009–1021, doi:10.1083/jcb.200509155.
[151]  Petermann, P.; Haase, I.; Knebel-Morsdorf, D. Impact of rac1 and cdc42 signaling during early herpes simplex virus type 1 infection of keratinocytes. J. Virol. 2009, 83, 9759–9772.
[152]  Hoppe, S.; Schelhaas, M.; Jaeger, V.; Liebig, T.; Petermann, P.; Knebel-Morsdorf, D. Early herpes simplex virus type 1 infection is dependent on regulated rac1/cdc42 signalling in epithelial mdckii cells. J. Gen. Virol. 2006, 87, 3483–3494, doi:10.1099/vir.0.82231-0.
[153]  Wittels, M.; Spear, P.G. Penetration of cells by herpes simplex virus does not require a low ph-dependent endocytic pathway. Virus Res. 1991, 18, 271–290, doi:10.1016/0168-1702(91)90024-P.
[154]  Valencia, S.M.; Hutt-Fletcher, L.M. Important but differential roles for actin in trafficking of epstein-barr virus in b cells and epithelial cells. J. Virol. 2012, 86, 2–10, doi:10.1128/JVI.05883-11.
[155]  Jones, N.L.; Lewis, J.C.; Kilpatrick, B.A. Cytoskeletal disruption during human cytomegalovirus infection of human lung fibroblasts. Eur. J. Cell Biol. 1986, 41, 304–312.
[156]  Krishnan, H.H.; Sharma-Walia, N.; Streblow, D.N.; Naranatt, P.P.; Chandran, B. Focal adhesion kinase is critical for entry of kaposi's sarcoma-associated herpesvirus into target cells. J. Virol. 2006, 80, 1167–1180, doi:10.1128/JVI.80.3.1167-1180.2006.
[157]  Chrzanowska-Wodnicka, M.; Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 1996, 133, 1403–1415, doi:10.1083/jcb.133.6.1403.
[158]  Naranatt, P.P.; Akula, S.M.; Zien, C.A.; Krishnan, H.H.; Chandran, B. Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-pkc-zeta-mek-erk signaling pathway in target cells early during infection: Implications for infectivity. J. Virol. 2003, 77, 1524–1539, doi:10.1128/JVI.77.2.1524-1539.2003.
[159]  Sharma-Walia, N.; Naranatt, P.P.; Krishnan, H.H.; Zeng, L.; Chandran, B. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gb induces the integrin-dependent focal adhesion kinase-src-phosphatidylinositol 3-kinase-rho gtpase signal pathways and cytoskeletal rearrangements. J. Virol. 2004, 78, 4207–4223, doi:10.1128/JVI.78.8.4207-4223.2004.
[160]  Veettil, M.V.; Sharma-Walia, N.; Sadagopan, S.; Raghu, H.; Sivakumar, R.; Naranatt, P.P.; Chandran, B. Rhoa-gtpase facilitates entry of kaposi's sarcoma-associated herpesvirus into adherent target cells in a src-dependent manner. J. Virol. 2006, 80, 11432–11446, doi:10.1128/JVI.01342-06.
[161]  Wilde, A.; Beattie, E.C.; Lem, L.; Riethof, D.A.; Liu, S.H.; Mobley, W.C.; Soriano, P.; Brodsky, F.M. Egf receptor signaling stimulates src kinase phosphorylation of clathrin, influencing clathrin redistribution and egf uptake. Cell 1999, 96, 677–687, doi:10.1016/S0092-8674(00)80578-4.
[162]  Galletta, B.J.; Mooren, O.L.; Cooper, J.A. Actin dynamics and endocytosis in yeast and mammals. Curr. Opin. Biotechnol. 2010, 21, 604–610, doi:10.1016/j.copbio.2010.06.006.
[163]  Schmid, S.L. Clathrin-coated vesicle formation and protein sorting: An integrated process. Annu. Rev. Biochem. 1997, 66, 511–548, doi:10.1146/annurev.biochem.66.1.511.
[164]  Brodsky, F.M.; Chen, C.Y.; Knuehl, C.; Towler, M.C.; Wakeham, D.E. Biological basket weaving: Formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 2001, 17, 517–568, doi:10.1146/annurev.cellbio.17.1.517.
[165]  Yarar, D.; Waterman-Storer, C.M.; Schmid, S.L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 2005, 16, 964–975.
[166]  Schmidt, M.H.; Dikic, I. The cbl interactome and its functions. Nat. Rev. Mol. Cell. Biol. 2005, 6, 907–918, doi:10.1038/nrm1762.
[167]  Valiya Veettil, M.; Sadagopan, S.; Kerur, N.; Chakraborty, S.; Chandran, B. Interaction of c-cbl with myosin iia regulates bleb associated macropinocytosis of kaposi's sarcoma-associated herpesvirus. PLoS Pathog. 2010, 6, e1001238, doi:10.1371/journal.ppat.1001238.
[168]  Mercer, J.; Helenius, A. Virus entry by macropinocytosis. Nat. Cell Biol. 2009, 11, 510–520, doi:10.1038/ncb0509-510.
[169]  Chakraborty, S.; ValiyaVeettil, M.; Sadagopan, S.; Paudel, N.; Chandran, B. C-cbl-mediated selective virus-receptor translocations into lipid rafts regulate productive kaposi's sarcoma-associated herpesvirus infection in endothelial cells. J. Virol. 2011, 85, 12410–12430, doi:10.1128/JVI.05953-11.
[170]  Ohashi, E.; Tanabe, K.; Henmi, Y.; Mesaki, K.; Kobayashi, Y.; Takei, K. Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments. PLoS One 2011, 6, e19942.
[171]  Hurley, J.H.; Stenmark, H. Molecular mechanisms of ubiquitin-dependent membrane traffic. Annu. Rev. Biophys. 2011, 40, 119–142, doi:10.1146/annurev-biophys-042910-155404.
[172]  Hicke, L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell. Biol. 2001, 2, 195–201, doi:10.1038/35056583.
[173]  Pan, H.; Xie, J.; Ye, F.; Gao, S.J. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by mek/erk, jnk, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 2006, 80, 5371–5382.
[174]  Sharma-Walia, N.; Krishnan, H.H.; Naranatt, P.P.; Zeng, L.; Smith, M.S.; Chandran, B. Erk1/2 and mek1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J. Virol. 2005, 79, 10308–10329, doi:10.1128/JVI.79.16.10308-10329.2005.
[175]  Xie, J.; Pan, H.; Yoo, S.; Gao, S.J. Kaposi's sarcoma-associated herpesvirus induction of ap-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J. Virol. 2005, 79, 15027–15037.
[176]  Qian, L.W.; Xie, J.; Ye, F.; Gao, S.J. Kaposi's sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J. Virol. 2007, 81, 7001–7010, doi:10.1128/JVI.00016-07.
[177]  Ye, F.C.; Blackbourn, D.J.; Mengel, M.; Xie, J.P.; Qian, L.W.; Greene, W.; Yeh, I.T.; Graham, D.; Gao, S.J. Kaposi's sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via ap-1 and ets1. J. Virol. 2007, 81, 3980–3991.
[178]  Qian, L.W.; Greene, W.; Ye, F.; Gao, S.J. Kaposi's sarcoma-associated herpesvirus disrupts adherens junctions and increases endothelial permeability by inducing degradation of ve-cadherin. J. Virol. 2008, 82, 11902–11912, doi:10.1128/JVI.01042-08.
[179]  Yoon, M.; Spear, P.G. Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J. Virol. 2002, 76, 7203–7208, doi:10.1128/JVI.76.14.7203-7208.2002.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133