全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2012 

From Exit to Entry: Long-term Survival and Transmission of Salmonella

DOI: 10.3390/pathogens1020128

Keywords: Salmonella, transmission, persistence, outbreak, rdar morphotype, tomato, sprouts, chocolate, genomics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens.

References

[1]  Blaser, M.J.; Kirschner, D. The equilibria that allow bacterial persistence in human hosts. Nature 2007, 449, 843–849, doi:10.1038/nature06198.
[2]  Savageau, M.A. Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am. Nat. 1983, 122, 732–744.
[3]  White, A.P.; Sibley, K.A.; Sibley, C.D.; Wasmuth, J.D.; Schaefer, R.; Surette, M.G.; Edge, T.A.; Neumann, N.F. Intergenic sequence comparison of Escherichia coli isolates reveals lifestyle adaptations but not host specificity. Appl. Environ. Microbiol. 2011, 77, 7620–7632, doi:10.1128/AEM.05909-11.
[4]  Santamaria, J.; Toranzos, G.A. Enteric pathogens and soil: A short review. Int. Microbiol. 2003, 6, 5–9.
[5]  Le Minor, L.; Popoff, M.Y. Designation of Salmonella enterica sp. Nov., nom. Rev., as the type and only species of the genus Salmonella: Request for an opinion. Int. J. Syst. Bacteriol. 1987, 37, 465–468, doi:10.1099/00207713-37-4-465.
[6]  Reeves, M.W.; Evins, G.M.; Heiba, A.A.; Plikaytis, B.D.; Farmer Iii, J.J. Clonal nature of Salmonella typhi and its genetic relatdeness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. Nov. J. Clin. Microbiol. 1989, 27, 313–320.
[7]  Grimont, P.A.D.; Weill, F.X. Antigenic formulae of the Salmonella serovars, 9th ed.; WHO Collaborating Center for Reference and Research on Salmonella. Institut Pasteur: Paris, France, 2007.
[8]  Callaway, T.R.; Edrington, T.S.; Anderson, R.C.; Byrd, J.A.; Nisbet, D.J. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J. Anim. Sci. 2007, 86, 163–172, doi:10.2527/jas.2007-0457.
[9]  Kingsley, R.A.; Msefula, C.L.; Thomson, N.R.; Kariuki, S.; Holt, K.E.; Gordon, M.A.; Harris, D.; Clarke, L.; Whitehead, S.; Sangal, V.; et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-saharan Africa have a distinct genotype. Genome Res. 2009, 19, 2279–2287, doi:10.1101/gr.091017.109.
[10]  Feasey, N.A.; Dougan, G.; Kingsley, R.A.; Heyderman, R.S.; Gordon, M.A. Invasive nontyphoidal Salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012, 379, 2489–2499.
[11]  Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O'Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889, doi:10.1086/650733.
[12]  Crump, J.A.; Mintz, E.D. Global trends in typhoid and paratyphoid fever. Clin. Infect. Dis. 2010, 50, 241–246, doi:10.1086/649541.
[13]  Voetsch, A.C.; Van Gilder, T.J.; Angulo, F.J.; Farley, M.M.; Shallow, S.; Marcus, R.; Cieslak, P.R.; Deneen, V.C.; Tauxe, R.V. Foodnet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the united states. Clin. Infect. Dis. 2004, 38 Suppl. 3, S127–S134.
[14]  Betancor, L.; Yim, L.; Martinez, A.; Fookes, M.; Sasias, S.; Schelotto, F.; Thomson, N.; Maskell, D.; Chabalgoity, J.A. Genomic comparison of the closely related Salmonella enterica serovars Enteritidis and Dublin. Open Microbiol. J. 2012, 6, 5–13, doi:10.2174/1874285801206010005.
[15]  Gonzalez-Escobedo, G.; Marshall, J.M.; Gunn, J.S. Chronic and acute infection of the gall bladder by Salmonella Typhi: Understanding the carrier state. Nat. Rev. Microbiol. 2011, 9, 9–14, doi:10.1038/nrmicro2490.
[16]  Levine, M.M.; Black, R.E.; Lanata, C. Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J. Infect. Dis. 1982, 146, 724–726, doi:10.1093/infdis/146.6.724.
[17]  Stokes, A.; Clarke, C. A search for typhoid carriers among 800 convalescents. Lancet 1916, 187, 566–569, doi:10.1016/S0140-6736(01)11375-9.
[18]  Vogelsang, T.M.; Boe, J. Temporary and chronic carriers of Salmonella typhi and Salmonella paratyphi B. J. Hyg. 1948, 46, 252–261, doi:10.1017/S0022172400036378.
[19]  Buchwald, D.S.; Blaser, M.J. A review of human salmonellosis: Ii. Duration of excretion following infection with nontyphi Salmonella. Rev. Infect. Dis. 1984, 6, 345–356, doi:10.1093/clinids/6.3.345.
[20]  Winfield, M.D.; Groisman, E.A. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 3687–3694, doi:10.1128/AEM.69.7.3687-3694.2003.
[21]  Spector, M.P.; Kenyon, W.J. Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res. Int. 2012, 45, 455–481, doi:10.1016/j.foodres.2011.06.056.
[22]  Davies, R.H.; Breslin, M. Persistence of Salmonella enteritidis phage type 4 in the environment and arthropod vectors on an empty free-range chicken farm. Environ. Microbiol. 2003, 5, 79–84, doi:10.1046/j.1462-2920.2003.00387.x.
[23]  Snow, L.C.; Davies, R.H.; Christiansen, K.H.; Carrique-Mas, J.J.; Cook, A.J.; Evans, S.J. Investigation of risk factors for Salmonella on commercial egg-laying farms in Great Britain, 2004-2005. Vet. Rec. 2010, 166, 579–586, doi:10.1136/vr.b4801.
[24]  Nuccio, S.P.; Thomson, N.R.; Fookes, M.C.; Baumler, A.J. Fimbrial signature arrangements in salmonella. In Salmonella: From genome to function; Caister Academic Press: Norfolk, UK, 2011; pp. 149–161.
[25]  Baumler, A.J.; Gilde, A.J.; Tsolis, R.M.; van der Velden, A.W.; Ahmer, B.M.; Heffron, F. Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J. Bacteriol. 1997, 179, 317–322.
[26]  Doran, J.L.; Collinson, S.K.; Burian, J.; Sarlos, G.; Todd, E.C.; Munro, C.K.; Kay, C.M.; Banser, P.A.; Peterkin, P.I.; Kay, W.W. DNA-based diagnostic tests for Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J. Clin. Microbiol. 1993, 31, 2263–2273.
[27]  Collinson, S.K.; Emody, L.; Muller, K.H.; Trust, T.J.; Kay, W.W. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis. J. Bacteriol. 1991, 173, 4773–4781.
[28]  Collinson, S.K.; Doig, P.C.; Doran, J.L.; Clouthier, S.; Trust, T.J.; Kay, W.W. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J. Bacteriol. 1993, 175, 12–18.
[29]  Collinson, S.K.; Emody, L.; Trust, T.J.; Kay, W.W. Thin aggregative fimbriae from diarrheagenic Escherichia coli. J. Bacteriol. 1992, 174, 4490–4495.
[30]  Romling, U.; Sierralta, W.D.; Eriksson, K.; Normark, S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol. 1998, 28, 249–264, doi:10.1046/j.1365-2958.1998.00791.x.
[31]  Romling, U.; Bian, Z.; Hammar, M.; Sierralta, W.D.; Normark, S. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 1998, 180, 722–731.
[32]  White, A.P.; Gibson, D.L.; Collinson, S.K.; Banser, P.A.; Kay, W.W. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J. Bacteriol. 2003, 185, 5398–5407, doi:10.1128/JB.185.18.5398-5407.2003.
[33]  Romling, U.; Rohde, M.; Olsen, A.; Normark, S.; Reinkoster, J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 2000, 36, 10–23, doi:10.1046/j.1365-2958.2000.01822.x.
[34]  Gibson, D.L.; White, A.P.; Snyder, S.D.; Martin, S.; Heiss, C.; Azadi, P.; Surette, M.; Kay, W.W. Salmonella produces an o-antigen capsule regulated by AgfD and important for environmental persistence. J. Bacteriol. 2006, 188, 7722–7730, doi:10.1128/JB.00809-06.
[35]  de Rezende, C.E.; Anriany, Y.; Carr, L.E.; Joseph, S.W.; Weiner, R.M. Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microbiol. 2005, 71, 7345–7351, doi:10.1128/AEM.71.11.7345-7351.2005.
[36]  Latasa, C.; Roux, A.; Toledo-Arana, A.; Ghigo, J.; Gamazo, C.; Penades, J.R.; Lasa, I. Bapa, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol. Microbiol. 2005, 58, 1522–1539.
[37]  Chapman, M.R.; Robinson, L.S.; Pinkner, J.S.; Roth, R.; Heuser, J.; Hammar, M.; Normark, S.; Hultgren, S.J. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 2002, 295, 851–855.
[38]  Collinson, S.K.; Parker, J.M.; Hodges, R.S.; Kay, W.W. Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J. Mol. Biol. 1999, 290, 741–756, doi:10.1006/jmbi.1999.2882.
[39]  Larsen, P.; Nielsen, J.L.; Dueholm, M.S.; Wetzel, R.; Otzen, D.; Nielsen, P.H.r. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 2007, 9, 3077–3090, doi:10.1111/j.1462-2920.2007.01418.x.
[40]  Anriany, Y.A.; Weiner, R.M.; Johnson, J.A.; De Rezende, C.E.; Joseph, S.W. Salmonella enterica serovar Typhimurium DT104 displays a rugose phenotype. Appl. Environ. Microbiol. 2001, 67, 4048–4056.
[41]  Scher, K.; Romling, U.; Yaron, S. Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 2005, 71, 1163–1168, doi:10.1128/AEM.71.3.1163-1168.2005.
[42]  Solano, C.; Garcia, B.; Valle, J.; Berasain, C.; Ghigo, J.M.; Gamazo, C.; Lasa, I. Genetic analysis of Salmonella enteritidis biofilm formation: Critical role of cellulose. Mol. Microbiol. 2002, 43, 793–808, doi:10.1046/j.1365-2958.2002.02802.x.
[43]  White, A.P.; Gibson, D.L.; Kim, W.; Kay, W.W.; Surette, M.G. Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. J. Bacteriol. 2006, 188, 3219–3227.
[44]  Stocki, S.L.; Annett, C.B.; Sibley, C.D.; McLaws, M.; Checkley, S.L.; Singh, N.; Surette, M.G.; White, A.P. Persistence of Salmonella on egg conveyor belts is dependent on the belt type but not on the rdar morphotype. Poult. Sci. 2007, 86, 2375–2383, doi:10.3382/ps.2007-00121.
[45]  Uhlich, G.A.; Cooke, P.H.; Solomon, E.B. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl. Environ. Microbiol. 2006, 72, 2564–2572.
[46]  Austin, J.W.; Sanders, G.; Kay, W.W.; Collinson, S.K. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett. 1998, 162, 295–301, doi:10.1111/j.1574-6968.1998.tb13012.x.
[47]  Ryu, J.H.; Beuchat, L.R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Appl. Environ. Microbiol. 2005, 71, 247–254, doi:10.1128/AEM.71.1.247-254.2005.
[48]  Apel, D.; White, A.P.; Grassl, G.A.; Finlay, B.B.; Surette, M.G. Long-term survival of Salmonella enterica serovar Typhmurium reveals an Infect. state that is underrepresented on laboratory media containing bile salts. Appl. Environ. Microbiol. 2009, 75, 4923–4925, doi:10.1128/AEM.00363-09.
[49]  White, A.P.; Gibson, D.L.; Grassl, G.A.; Kay, W.W.; Finlay, B.B.; Vallance, B.A.; Surette, M.G. Aggregation via the red, dry, and rough morphotype is not a virulence adaptation in Salmonella enterica serovar Typhimurium. Infect. Immun. 2008, 76, 1048–1058, doi:10.1128/IAI.01383-07.
[50]  Knudsen, G.M.; Nielsen, M.-B.; Grassby, T.; Danino-Appleton, V.; Thomsen, L.E.; Colquhoun, I.J.; Brocklehurst, T.F.; Olsen, J.E.; Hinton, J.C.D. A third mode of surface-associated growth: Immobilization of Salmonella enterica serovar Typhimurium modulates the RpoS-directed transcriptional programme. Environ.Microbiol 2012, 14, 1855–1875, doi:10.1111/j.1462-2920.2012.02703.x.
[51]  White, A.P.; Weljie, A.M.; Apel, D.; Zhang, P.; Shaykhutdinov, R.; Vogel, H.J.; Surette, M.G. A global metabolic shift is linked to Salmonella multicellular development. PLoS One 2010, 5, e11814, doi:10.1371/journal.pone.0011814.
[52]  Grantcharova, N.; Peters, V.; Monteiro, C.; Zakikhany, K.; Romling, U. Bistable expression of csgD in biofilm development of Salmonella enterica serovar Typhimurium. J. Bacteriol. 2010, 192, 456–466, doi:10.1128/JB.01826-08.
[53]  Siebring, J.; Sorg, R.A.; Herber, M.; Kuipers, O.P. Take it or leave it: Mechanisms underlying bacterial bistable regulatory networks. In Bacterial Regulatory Networks; Filloux, A.A.M., Ed.; Caister Academic Press: Norfolk, UK, 2012; pp. 305–332.
[54]  Lewis, K. Persister cells. Annu. Rev. Microbiol. 2010, 64, 357–372, doi:10.1146/annurev.micro.112408.134306.
[55]  Gunn, J.S. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2000, 2, 907–913, doi:10.1016/S1286-4579(00)00392-0.
[56]  Roszak, D.B.; Grimes, D.J.; Colwell, R.R. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 1984, 30, 334–338, doi:10.1139/m84-049.
[57]  Gupte, A.R.; de Rezende, C.L.E.; Joseph, S.W. Induction and resuscitation of viable but nonculturable Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microbiol. 2003, 69, 6669–6675.
[58]  Panutdaporn, N.; Kawamoto, K.; Asakura, H.; Makino, S.I. Resuscitation of the viable but non-culturable state of Salmonella enterica serovar Oranienburg by recombinant resuscitation-promoting factor derived from Salmonella Typhimurium strain LT2. Int. J. Food Microbiol. 2006, 106, 241–247, doi:10.1016/j.ijfoodmicro.2005.06.022.
[59]  Reissbrodt, R.; Heier, H.; Tschape, H.; Kingsley, R.A.; Williams, P.H. Resuscitation by ferrioxamine e of stressed Salmonella enterica serovar Typhimurium from soil and water microcosms. Appl. Environ. Microbiol. 2000, 66, 4128–4130, doi:10.1128/AEM.66.9.4128-4130.2000.
[60]  Reissbrodt, R.; Rienaecker, I.; Romanova, J.M.; Freestone, P.P.E.; Haigh, R.D.; Lyte, M.; Tschape, H.; Williams, P.H. Resuscitation of Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli from the viable but nonculturable state by heat-stable enterobacterial autoinducer. Appl. Environ. Microbiol. 2002, 68, 4788–4794, doi:10.1128/AEM.68.10.4788-4794.2002.
[61]  Caro, A.; Got, P.; Baleux, B. Physiological changes of Salmonella typhimurium cells under osmotic and starvation conditions by image analysis. FEMS Microbiol. Lett. 1999, 179, 265–273, doi:10.1111/j.1574-6968.1999.tb08737.x.
[62]  Lesne, J.; Berthet, S.; Binard, S.; Rouxel, A.; Humbert, F. Changes in culturability and virulence of Salmonella typhimurium during long-term starvation under desiccating conditions. Int. J. Food Microbiol. 2000, 60, 195–203, doi:10.1016/S0168-1605(00)00311-1.
[63]  Smith, R.J.; Newton, A.T.; Harwood, C.R.; Barer, M.R. Active but nonculturable cells of Salmonella enterica serovar Typhimurium do not infect or colonize mice. Microbiol. 2002, 148, 2717–2717.
[64]  Kamruzzaman, M.; Udden, S.M.N.; Cameron, D.E.; Calderwood, S.B.; Nair, G.B.; Mekalanos, J.J.; Faruque, S.M. Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc. Natl. Acad. Sci. USA 2010, 107, 1588–1593.
[65]  CDC. Vital signs: Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U.S. Sites, 1996-2010. MMWR 2011, 60, 749–755.
[66]  CDC. Preliminary foodnet data on the incidence of infection with pathogens transmitted commonly through food, 10 states. MMWR 2009, 59, 418–422.
[67]  Hedberg, C.W.; Angulo, F.J.; White, K.E.; Langkop, C.W.; Schell, W.L.; Stobierski, M.G.; Schuchat, A.; Besser, J.M.; Dietrich, S.; et al. Outbreaks of salmonellosis associated with eating uncooked tomatoes: Implications for public health. Epidemiol. Infect. 1999, 122, 385–393, doi:10.1017/S0950268899002393.
[68]  Cummings, K.; Barrett, E.; Mohle-Boetani, J.C.; Brooks, J.T.; Farrar, J.; Hunt, T.; Fiore, A.; Komatsu, K.; Werner, S.B.; Slutsker, L. A multistate outbreak of Salmonella enterica serotype Baildon associated with domestic raw tomatoes. Emerg. Infect. Dis. 2001, 7, 1046–1048, doi:10.3201/eid0706.010625.
[69]  Greene, S.K.; Daly, E.R.; Talbot, E.A.; Demma, L.J.; Holzbauer, S.; Patel, N.J.; Hill, T.A.; Walderhaug, M.O.; Hoekstra, R.M.; Lynch, M.F.; Painter, J.A. Recurrent multistate outbreak of Salmonella newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect. 2008, 136, 157–165.
[70]  CDC. Outbreaks of Salmonella infections associated with eating roma tomatoes-united states and canada, 2004. MMWR 2005, 54, 325–328.
[71]  Gupta, S.K.; Nalluswami, K.; Snider, C.; Perch, M.; Balasegaram, M.; Burmeister, D.; Lockett, J.; Sandt, C.; Hoekstra, R.M.; Montgomery, S. Outbreak of Salmonella Braenderup infections associated with roma tomatoes, northeastern United States, 2004: A useful method for subtyping exposures in field investigations. Epidemiol. Infect. 2007, 135, 1165–1173.
[72]  Sandt, C.H.; Krouse, D.A.; Cook, C.R.; Hackman, A.L.; Chmielecki, W.A.; Warren, N.G. The key role of pulsed-field gel electrophoresis in investigation of a large multiserotype and multistate food-borne outbreak of Salmonella infections centered in Pennsylvania. J. Clin. Microbiol. 2006, 44, 3208–3212, doi:10.1128/JCM.01404-06.
[73]  CDC. Multistate outbreaks of Salmonella infections associated with raw tomatoes eaten in restaurants--United States, 2005-2006. MMWR 2007, 56, 909–911.
[74]  Behravesh, C.B.; Blaney, D.; Medus, C.; Bidol, S.A.; Phan, Q.; Soliva, S.; Daly, E.R.; Smith, K.; Miller, B.; Taylor, T.; et al. Multistate outbreak of Salmonella serotype Typhimurium infections associated with consumption of restaurant tomatoes, USA, 2006: Hypothesis generation through case exposures in multiple restaurant clusters. Epidemiol. Infect. 2012, 140, 2053–2061, doi:10.1017/S0950268811002895.
[75]  Mahon, B.E.; Ponka, A.; Hall, W.N.; Komatsu, K.; Dietrich, S.E.; Siitonen, A.; Cage, G.; Hayes, P.S.; Lambert-Fair, M.A.; Bean, N.H.; Griffin, P.M.; Slutsker, L. An international outbreak of Salmonella infections caused by alfalfa sprouts grown from contaminated seeds. J. Infect. Dis. 1997, 175, 876–882, doi:10.1086/513985.
[76]  Van Beneden, C.A.; Keene, W.E.; Strang, R.A.; Werker, D.H.; King, A.S.; Mahon, B.; Hedberg, K.; Bell, A.; Kelly, M.T.; Balan, V.K.; Mac Kenzie, W.R.; Fleming, D. Multinational outbreak of Salmonella enterica serotype Newport infections due to contaminated alfalfa sprouts. J. Am. Med. Assoc. 1999, 281, 158–162.
[77]  Mohle-Boetani, J.C.; Farrar, J.A.; Werner, S.B.; Minassian, D.; Bryant, R.; Abbott, S.; Slutsker, L.; Vugia, D.J. Escherichia coli O157 and Salmonella infections associated with sprouts in California, 1996-1998. Ann. Int. Med. 2001, 135, 239–247.
[78]  Pezzino, G.; Miller, C.; Flahart, R.; Potsic, S.R. A multi-state outbreak of Salmonella serotypes Infantis and Anatum - Kansas and Missouri, 1997. Kansas Medicine: J. Kansas Med. Soc. 1998, 98, 10–12.
[79]  Gill, C.J.; Keene, W.E.; Mohle-Boetani, J.C.; Farrar, J.A.; Waller, P.L.; Hahn, C.G.; Cieslak, P.R. Alfalfa seed decontamination in a Salmonella outbreak. Emerg. Infect. Dis. 2003, 9, 474–479, doi:10.3201/eid0904.020519.
[80]  Proctor, M.E.; Hamacher, M.; Tortorello, M.L.; Archer, J.R.; Davis, J.P. Multistate outbreak of Salmonella serovar Muenchen infections associated with alfalfa sprouts grown from seeds pretreated with calcium hypochlorite. J. Clin. Microbiol. 2001, 39, 3461–3465, doi:10.1128/JCM.39.10.3461-3465.2001.
[81]  Brooks, J.T.; Rowe, S.Y.; Shillam, P.; Heltzel, D.M.; Hunter, S.B.; Slutsker, L.; Hoekstra, R.M.; Luby, S.P. Salmonella Typhimurium infections transmitted by chlorine-pretreated clover sprout seeds. Am. J. Epidemiol. 2001, 154, 1020–1028, doi:10.1093/aje/154.11.1020.
[82]  Winthrop, K.L.; Palumbo, M.S.; Farrar, J.A.; Mohle-Boetani, J.C.; Abbott, S.; Beatty, M.E.; Inami, G.; Werner, S.B. Alfalfa sprouts and Salmonella Kottbus infection: A multistate outbreak following inadequate seed disinfection with heat and chlorine. J. Food Prot. 2003, 66, 13–17.
[83]  CDC. Outbreak of Salmonella serotype Saintpaul infections associated with eating alfalfa sprouts - United States, 2009. MMWR 2009, 58, 500–503.
[84]  CDC. Salmonella newport on alfalfa sprouts. Available online: http://www.cdc.gov/salmonella/newport/index.html (Accessed on 5 June 2012).
[85]  CDC. Salmonella linked to alfalfa sprouts. Available online: http://www.cdc.gov/salmonella/i4512i-/021011/index.html (Accessed on June 5, 2012).
[86]  CDC. Salmonella Enteritidis infections on alfalfa sprouts. Available online: http://www.cdc.gov/salmonella/sprouts-enteritidis0611/index.html (Accessed on 5 June 2012).
[87]  Lehmacher, A.; Bockemuhl, J.; Aleksic, S. Nationwide outbreak of human salmonellosis in germany due to contaminated paprika and paprika-powdered potato chips. Epidemiol. Infect. 1995, 115, 501–511, doi:10.1017/S0950268800058660.
[88]  CDC. Multistate outbreak of Salmonella serotype Agona infections linked to toasted oats cereal--United States, April-May, 1998. MMWR 1998, 47, 462–464.
[89]  Hiramatsu, R.; Matsumoto, M.; Sakae, K.; Miyazaki, Y. Ability of shiga toxin-producing Escherichia coli and Salmonella spp. To survive in a desiccation model system and in dry foods. Appl. Environ. Microbiol. 2005, 71, 6657–6663, doi:10.1128/AEM.71.11.6657-6663.2005.
[90]  Tsuji, H.; Hamada, K. Outbreak of salmonellosis caused by ingestion of cuttlefish chips contaminated by both Salmonella Chester and Salmonella Oranienburg. Jpn. J.Infect. Dis. 1999, 52, 138–139.
[91]  Gastrin, B.; Kampe, A.; Nystrom, K.G.; Oden-Johanson, B.; Wessel, G.; Zetterberg, B. Salmonella durham epidemic caused by contaminated cocoa. Lakartidningen 1972, 69, 5335–5338.
[92]  Craven, P.C.; Mackel, D.C.; Baine, W.B.; Barker, W.H.; Gangarosa, E.J. International outbreak of Salmonella Eastbourne infection traced to contaminated chocolate. Lancet 1975, 1, 788–792.
[93]  D'Aoust, J.Y.; Aris, B.J.; Thisdele, P.; Durante, A.; Brisson, N.; Dragon, D.; Lachapelle, G.; Johnston, M.; Laidley, R. Salmonella eastbourne outbreak associated with chocolate. Can. Inst. Food Sci. Technol. J. 1975, 8, 181–184.
[94]  Gill, O.N.; Sockett, P.N.; Bartlett, C.L.; Vaile, M.S.; Rowe, B.; Gilbert, R.J.; Dulake, C.; Murrell, H.C.; Salmaso, S. Outbreak of Salmonella napoli infection caused by contaminated chocolate bars. Lancet 1983, 1, 574–577.
[95]  Hockin, J.C.; D'Aoust. An international outbreak of Salmonella nima from imported chocolate. J. Food Prot. 1989, 52, 51–54.
[96]  Kapperud, G.; Gustavsen, S.; Hellesnes, I.; Hansen, A.H.; Lassen, J.; Hirn, J.; Jahkola, M.; Montenegro, M.A.; Helmuth, R. Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J. Clin. Microbiol. 1990, 28, 2597–2601.
[97]  Werber, D.; Dreesman, J.; Feil, F.; van Treeck, U.; Fell, G.; Ethelberg, S.; Hauri, A.M.; Roggentin, P.; Prager, R.; Fisher, I.S.T.; Behnke, S.C.; Bartelt, E.; Weise, E.; Ellis, A.; Siitonen, A.; Andersson, Y.; Tschape, H.; Kramer, M.H.; Ammon, A. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 2005, 5, 7, doi:10.1186/1471-2334-5-7.
[98]  Micallef, S.A.; Rosenberg Goldstein, R.E.; George, A.; Kleinfelter, L.; Boyer, M.S.; McLaughlin, C.R.; Estrin, A.; Ewing, L.; Jean-Gilles Beaubrun, J.; Hanes, D.E.; Kothary, M.H.; Tall, B.D.; Razeq, J.H.; Joseph, S.W.; Sapkota, A.R. Occurrence and antibiotic resistance of multiple Salmonella serotypes recovered from water, sediment and soil on mid-atlantic tomato farms. Environ. Res. 2012, 114, 31–39, doi:10.1016/j.envres.2012.02.005.
[99]  Gaertner, J.P.; Garres, T.; Becker, J.C.; Jimenez, M.L.; Forstner, M.R.J.; Hahn, D. Temporal analyses of salmonellae in a headwater spring ecosystem reveals the effects of precipitation and runoff events. J. Water Health 2009, 7, 115–121, doi:10.2166/wh.2009.138.
[100]  Haley, B.J.; Cole, D.J.; Lipp, E.K. Distribution, diversity, and seasonality of waterborne salmonellae in a rural watershed. Appl. Environ. Microbiol. 2009, 75, 1248–1255.
[101]  Polo, F.; Figueras, M.J.; Inza, I.; Sala, J.; Fleisher, J.M.; Guarro, J. Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiol. Lett. 1998, 160, 253–256, doi:10.1111/j.1574-6968.1998.tb12919.x.
[102]  Polo, F.; Figueras, M.J.; Inza, I.; Sala, J.; Fleisher, J.M.; Guarro, J. Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms. Antonie Van Leeuwenhoek 1999, 75, 285–292, doi:10.1023/A:1001817305779.
[103]  Santo Domingo, J.W.; Harmon, S.; Bennett, J. Survival of Salmonella species in river water. Curr. Microbiol. 2000, 40, 409–417.
[104]  Gaertner, J.P.; Mendoza, J.A.; Forstner, M.R.J.; Hahn, D. Recovery of Salmonella from biofilms in a headwater spring ecosystem. J. Water Health 2011, 9, 458–466.
[105]  Hintz, L.D.; Boyer, R.R.; Ponder, M.A.; Williams, R.C.; Rideout, S.L. Recovery of Salmonella enterica newport introduced through irrigation water from tomato (Lycopersicum esculentum) fruit, roots, stems, and leaves. HortScience 2010, 45, 675–678.
[106]  Guo, X.; van Iersel, M.W.; Chen, J.; Brackett, R.E.; Beuchat, L.R. Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated nutrient solution. Appl. Environ. Microbiol. 2002, 68, 3639–3643, doi:10.1128/AEM.68.7.3639-3643.2002.
[107]  Miles, J.M.; Sumner, S.S.; Boyer, R.R.; Williams, R.C.; Latimer, J.G.; McKinney, J.M. Internalization of Salmonella enterica serovar Montevideo into greenhouse tomato plants through contaminated irrigation water or seed stock. J. Food Prot. 2009, 72, 849–852.
[108]  Gu, G.; Hu, J.; Cevallos-Cevallos, J.M.; Richardson, S.M.; Bartz, J.A.; van Bruggen, A.H.C. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 2011, 6, e27340.
[109]  Zhuang, R.Y.; Beuchat, L.R.; Angulo, F.J. Fate of Salmonella montevideo on and in raw tomatoes as affected by temperature and treatment with chlorine. Appl. Environ.Microbiol. 1995, 61, 2127–2131.
[110]  Backer, H.D.; Mohle-Boetani, J.C.; Werner, S.B.; Abbott, S.L.; Farrar, J.; Vugia, D.J. High incidence of extra-intestinal infections in a Salmonella Havana outbreak associated with alfalfa sprouts. Pub. Health Rep. 2000, 115, 339–339, doi:10.1093/phr/115.4.339.
[111]  National Advisory Committee on Microbiological Criteria for Food. Microbiological safety evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol. 1999, 52, 123–153, doi:10.1016/S0168-1605(99)00135-X.
[112]  Weissinger, W.R.; Beuchat, L.R. Comparison of aqueous chemical treatments to eliminate Salmonella on alfalfa seeds. J. Food Prot. 2000, 63, 1475–1482.
[113]  Beuchat, L.R.; Ryu, J.H. Produce handling and processing practices. Emerg. Infect. Dis. 1997, 3, 459–465, doi:10.3201/eid0304.970407.
[114]  Jaquette, C.B.; Beuchat, L.R.; Mahon, B.E. Efficacy of chlorine and heat treatment in killing Salmonella stanley inoculated onto alfalfa seeds and growth and survival of the pathogen during sprouting and storage. Appl. Environ. Microbiol. 1996, 62, 2212–2215.
[115]  Andrews, W.H.; Mislivec, P.B.; Wilson, C.R.; Bruce, V.R.; Poelma, P.L.; Gibson, R.; Trucksess, M.W.; Young, K. Microbial hazards associated with bean sprouting. J. Assoc. Off. Anal. Chem. 1982, 65, 241–248.
[116]  Dong, Y.; Iniguez, A.L.; Ahmer, B.M.M.; Triplett, E.W. Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Appl. Environ. Microbiol. 2003, 69, 1783–1790.
[117]  Barak, J.D.; Gorski, L.; Naraghi-Arani, P.; Charkowski, A.O. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl. Environ. Microbiol. 2005, 71, 5685–5691.
[118]  Podolak, R.; Enache, E.; Stone, W.; Black, D.G.; Elliott, P.H. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. J. Food Prot. 2010, 73, 1919–1936.
[119]  Chia, T.W.R.; Goulter, R.M.; McMeekin, T.; Dykes, G.A.; Fegan, N. Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol. 2009, 26, 853–859, doi:10.1016/j.fm.2009.05.012.
[120]  Morita, T.; Kitazawa, H.; Iida, T.; Kamata, S. Prevention of Salmonella cross-contamination in an oilmeal manufacturing plant. J. Appl. Microbiol. 2006, 101, 464–473, doi:10.1111/j.1365-2672.2006.02972.x.
[121]  Marin, C.; Hernandiz, A.; Lainez, M. Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult. Sci. 2009, 88, 424–431, doi:10.3382/ps.2008-00241.
[122]  Nesse, L.L.; Nordby, K.; Heir, E.; Bergsjoe, B.; Vardund, T.; Nygaard, H.; Holstad, G. Molecular analyses of Salmonella enterica isolates from fish feed factories and fish feed ingredients. Appl. Environ. Microbiol. 2003, 69, 1075–1081, doi:10.1128/AEM.69.2.1075-1081.2003.
[123]  Vestby, L.K.; Moretro, T.; Langsrud, S.; Heir, E.; Nesse, L.L. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet. Res. 2009, 5, 20, doi:10.1186/1746-6148-5-20.
[124]  Refsum, T.r.; Handeland, K.; Baggesen, D.L.; Holstad, G.; Kapperud, G. Salmonellae in avian wildlife in norway from 1969 to 2000. Appl. Environ. Microbiol. 2002, 68, 5595–5599, doi:10.1128/AEM.68.11.5595-5599.2002.
[125]  Solomon, E.B.; Niemira, B.A.; Sapers, G.M.; Annous, B.A. Biofilm formation, cellulose production, and curli biosynthesis by Salmonella originating from produce, animal, and clinical sources. J. Food Prot. 2005, 68, 906–912.
[126]  Stepanovic, S.; Cirkovic, I.; Mijac, V.; Svabic-Vlahovic, M. Influence of the incubation temperature, atmosphere and dynamic conditions on biofilm formation by Salmonella spp. Food Microbiol. 2003, 20, 339–343, doi:10.1016/S0740-0020(02)00123-5.
[127]  Patel, J.; Sharma, M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 2010, 139, 41–47, doi:10.1016/j.ijfoodmicro.2010.02.005.
[128]  Lund, B.M.; Eklund, T. Control of pH and use of organic acids. In Microbiological Safety and Quality of Food; Aspen Publishers: Gaithersburg, MD, 2000; pp. 175–199.
[129]  Tamminga, S.K.; Beumer, R.R.; Kampelmacher, E.H.; van Leusden, F.M. Survival of Salmonella eastbourne and Salmonella typhimurium in chocolate. J. Hyg. 1976, 76, 41–47, doi:10.1017/S0022172400054929.
[130]  Goepfert, J.M.; Biggie, R.A. Heat resistance of Salmonella typhimurium and Salmonella senftenberg 775W in milk chocolate. Appl. Microbiol. 1968, 16, 1939–1940.
[131]  Tamminga, S.K.; Beumer, R.R.; Kampelmacher, E.H.; van Leusden, F.M. Survival of Salmonella eastbourne and Salmonella typhimurium in milk chocolate prepared with artificially contaminated milk powder. J. Hyg. 1977, 79, 333–337, doi:10.1017/S002217240005316X.
[132]  Blaser, M.J.; Newman, L.S. A review of human salmonellosis: I. Infective dose. Rev. Infect. Dis. 1982, 4, 1096–1106, doi:10.1093/clinids/4.6.1096.
[133]  D'Aoust, J.Y. Salmonella and the chocolate industry. A review. J. Food Prot. 1977, 40, 718–727.
[134]  Chan, K.; Baker, S.; Kim, C.C.; Detweiler, C.S.; Dougan, G.; Falkow, S. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J. Bacteriol. 2003, 185, 553–563.
[135]  Didelot, X.; Bowden, R.; Street, T.; Golubchik, T.; Spencer, C.; McVean, G.; Sangal, V.; Anjum, M.F.; Achtman, M.; Falush, D.; Donnelly, P. Recombination and population structure in Salmonella enterica. PLoS Genet. 2011, 7, e1002191.
[136]  den Bakker, H.C.; Switt, A.I.M.; Govoni, G.; Cummings, C.A.; Ranieri, M.L.; Degoricija, L.; Hoelzer, K.; Rodriguez-Rivera, L.D.; Brown, S.; Bolchacova, E.; et al. Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genomics 2011, 12, 425, doi:10.1186/1471-2164-12-425.
[137]  Sangal, V.; Harbottle, H.; Mazzoni, C.J.; Helmuth, R.; Guerra, B.; Didelot, X.; Paglietti, B.; Rabsch, W.; Brisse, S.; Weill, F.X.; Roumagnac, P.; Achtman, M. Evolution and population structure of Salmonella enterica serovar Newport. J. Bacteriol. 2010, 192, 6465–6476.
[138]  Holt, K.E.; Parkhill, J.; Mazzoni, C.J.; Roumagnac, P.; Weill, F.-X.; Goodhead, I.; Rance, R.; Baker, S.; Maskell, D.J.; Wain, J.; Dolecek, C.; Achtman, M.; Dougan, G. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet. 2008, 40, 987–993.
[139]  McClelland, M.; Sanderson, K.E.; Clifton, S.W.; Latreille, P.; Porwollik, S.; Sabo, A.; Meyer, R.; Bieri, T.; Ozersky, P.; McLellan, M.; et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 2004, 36, 1268–1274.
[140]  Kingsley, R.A.; Santos, R.L.; Keestra, A.M.; Adams, L.G.; B√§umler, A.J. Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol. Microbiol. 2002, 43, 895–905, doi:10.1046/j.1365-2958.2002.02805.x.
[141]  Kingsley, R.A.; van Amsterdam, K.; Kramer, N.; Baumler, A.J. The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect. Immun. 2000, 68, 2720–2727.
[142]  Thomson, N.R.; Clayton, D.J.; Windhorst, D.; Vernikos, G.; Davidson, S.; Churcher, C.; Quail, M.A.; Stevens, M.; Jones, M.A.; Watson, M.; et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008, 18, 1624–1637, doi:10.1101/gr.077404.108.
[143]  Betancor, L.; Yim, L.; Fookes, M.; Martinez, A.; Thomson, N.R.; Ivens, A.; Peters, S.; Bryant, C.; Algorta, G.; Kariuki, S.; Schelotto, F.; Maskell, D.; Dougan, G.; Chabalgoity, J.A. Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates. BMC Microbiol. 2009, 9, 237, doi:10.1186/1471-2180-9-237.
[144]  Fricke, W.F.; Mammel, M.K.; McDermott, P.F.; Tartera, C.; White, D.G.; LeClerc, J.E.; Ravel, J.; Cebula, T.A. Comparative genomics of 28 Salmonella enterica isolates: Evidence for crispr-mediated adaptive sublineage evolution. J. Bacteriol. 2011, 193, 3556–3568, doi:10.1128/JB.00297-11.
[145]  Hoffmann, M.; Zhao, S.; Luo, Y.; Li, C.; Folster, J.P.; Whichard, J.; Allard, M.W.; Brown, E.W.; McDermott, P.F. Genome sequences of five Salmonella enterica serovar Heidelberg isolates associated with a 2011 multistate outbreak in the united states. J. Bacteriol. 2012, 194, 3274–3275, doi:10.1128/JB.00419-12.
[146]  Okoro, C.K.; Kingsley, R.A.; Quail, M.A.; Kankwatira, A.M.; Feasey, N.A.; Parkhill, J.; Dougan, G.; Gordon, M.A. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella Typhimurium disease. Clin. Infect. Dis. 2012, 54, 955–963.
[147]  Richardson, E.J.; Limaye, B.; Inamdar, H.; Datta, A.; Manjari, K.S.; Pullinger, G.D.; Thomson, N.R.; Joshi, R.R.; Watson, M.; Stevens, M.P. Genome sequences of Salmonella enterica serovar Typhimurium, Choleraesuis, Dublin, and Gallinarum strains of well- defined virulence in food-producing animals. J. Bacteriol. 2011, 193, 3162–3163, doi:10.1128/JB.00394-11.
[148]  Feng, Y.; Liu, W.Q.; Sanderson, K.E.; Liu, S.L. Comparison of salmonella genomes. In Salmonella: From genome to function; Caister Academic Press: Norfolk, UK, 2011; pp. 49–67.
[149]  Leekitcharoenphon, P.; Lukjancenko, O.; Friis, C.; Aarestrup, F.M.; Ussery, D.W. Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics 2012, 13, doi:10.1186/1471-2164-13-88.
[150]  Didelot, X.; Achtman, M.; Parkhill, J.; Thomson, N.R.; Falush, D. A bimodal pattern of relatedness between the salmonella paratyphi a and typhi genomes: Convergence or divergence by homologous recombination? Genome Res. 2007, 17, 61–68.
[151]  Holt, K.E.; Perkins, T.T.; Dougan, G.; Kingsley, R.A. Genomics and pathogenesis of Salmonella enterica serovars Typhi and Paratyphi A. In Salmonella: From genome to function; Caister Academic Press: Norfolk, UK, 2011; pp. 107–121.
[152]  Romling, U.; Bokranz, W.; Rabsch, W.; Zogaj, X.; Nimtz, M.; Tschape, H. Occurrence and regulation of the multicellular morphotype in Salmonella serovars important in human disease. Int.J. Med. Microbiol. 2003, 293, 273–285, doi:10.1078/1438-4221-00268.
[153]  White, A.P.; Surette, M.G. Comparative genetics of the rdar morphotype in Salmonella. J. Bacteriol. 2006, 188, 8395–8406, doi:10.1128/JB.00798-06.
[154]  Mahajan, R.K.; Khan, S.A.; Chandel, D.S.; Kumar, N.; Hans, C.; Chaudhry, R. Fatal case of Salmonella enterica subsp. arizonae gastroenteritis in an infant with microcephaly. J. Clin. Microbiol. 2003, 41, 5830–5832.
[155]  Meric, G.; Kemsley, E.K.; Falush, D.; Saggers, E.J.; Lucchini, S. Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ. Microbiol. , 2012, doi:10.1111/j.1462-2920.2012.02852.x.
[156]  Sakellaris, H.; Hannink, N.K.; Rajakumar, K.; Bulach, D.; Hunt, M.; Sasakawa, C.; Adler, B. Curli loci of Shigella spp. Infect. Immun. 2000, 68, 3780–3783, doi:10.1128/IAI.68.6.3780-3783.2000.
[157]  Bokranz, W.; Wang, X.; Tschape, H.; Romling, U. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J. Med. Microbiol. 2005, 54, 1171–1182, doi:10.1099/jmm.0.46064-0.
[158]  Crawford, R.W.; Rosales-Reyes, R.; Ramirez-Aguilar, M.d.l.L.; Chapa-Azuela, O.; Alpuche-Aranda, C.; Gunn, J.S. Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc. Natl. Acad. Sci. USA 2010, 107, 4353–4358.
[159]  Lawley, T.D.; Bouley, D.M.; Hoy, Y.E.; Gerke, C.; Relman, D.A.; Monack, D.M. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect. Immun. 2007, 76, 403–416.
[160]  Gordon, M.A. Invasive nontyphoidal Salmonella disease. Curr. Opin. Infect. Dis. 2011, 24, 484–489, doi:10.1097/QCO.0b013e32834a9980.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413