全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2012 

Practical Dynamic Contrast Enhanced MRI in Small Animal Models of Cancer: Data Acquisition, Data Analysis, and Interpretation

DOI: 10.3390/pharmaceutics4030442

Keywords: DCE-MRI, mouse, cancer, diffusion, FLT, FDG, FMISO

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) consists of the continuous acquisition of images before, during, and after the injection of a contrast agent. DCE-MRI allows for noninvasive evaluation of tumor parameters related to vascular perfusion and permeability and tissue volume fractions, and is frequently employed in both preclinical and clinical investigations. However, the experimental and analytical subtleties of the technique are not frequently discussed in the literature, nor are its relationships to other commonly used quantitative imaging techniques. This review aims to provide practical information on the development, implementation, and validation of a DCE-MRI study in the context of a preclinical study (though we do frequently refer to clinical studies that are related to these topics).

References

[1]  Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011, 17, 1359–1370.
[2]  Ferrara, N.; Gerber, H.; LeCouter, J. The biology of vegf and its receptors. Nat. Med. 2003, 9, 669–676, doi:10.1038/nm0603-669.
[3]  Young, R.; Reed, M. Anti-angiogenic therapy: Concept to clinic. Microcirculation 2012, 19, 115–125, doi:10.1111/j.1549-8719.2011.00147.x.
[4]  Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E.; Dowell, J.M.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Wagner, M.; et al. Phase ii trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin.Cancer Res. 2007, 13, 1253–1259, doi:10.1158/1078-0432.CCR-06-2309.
[5]  Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342, doi:10.1056/NEJMoa032691.
[6]  Miller, K.; Wang, M.; Gralow, J.; Dickler, M.; Cobleigh, M.; Perez, E.A.; Shenkier, T.; Cella, D.; Davidson, N.E. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 2007, 357, 2666–2676, doi:10.1056/NEJMoa072113.
[7]  Saltz, L.B.; Clarke, S.; Diaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase iii study. J. Clin. Oncol. 2008, 26, 2013–2019.
[8]  Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740.
[9]  Miles, D.W.; Chan, A.; Dirix, L.Y.; Cortes, J.; Pivot, X.; Tomczak, P.; Delozier, T.; Sohn, J.H.; Provencher, L.; Puglisi, F.; et al. Phase iii study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 2010, 28, 3239–3247.
[10]  Robert, N.J.; Dieras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.; Zhou, X.; et al. Ribbon-1: Randomized, double-blind, placebo-controlled, phase iii trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 2011, 29, 1252–1260.
[11]  Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet 2006, 368, 1329–1338.
[12]  Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 125–134, doi:10.1056/NEJMoa060655.
[13]  Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390.
[14]  Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590.
[15]  Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124.
[16]  Tofts, P.S.; Brix, G.; Buckley, D.L.; Evelhoch, J.L.; Henderson, E.; Knopp, M.V.; Larsson, H.B.W.; Lee, T.Y.; Mayr, N.A.; Parker, G.J.M.; et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted mri of a diffusable tracer: Standardized quantities and symbols. J. Magn. Reson. Imag. 1999, 10, 223–232, doi:10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S.
[17]  Yankeelov, T.E.; Gore, J.C. Dynamic contrast enhanced magnetic resonance imaging in oncology: Theory, data, acquisition, analysis, and examples. Curr. Med. Imag. Rev. 2007, 3, 91–107, doi:10.2174/157340507780619179.
[18]  Lee, L.; Sharma, S.; Morgan, B.; Allegrini, P.; Schnell, C.; Brueggen, J.; Cozens, R.; Horsfield, M.; Guenther, C.; Steward, W.; et al. Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (vegf) receptor inhibitor, ptk787/zk 222584 (ptk/zk): Translation of biological activity in a mouse melanoma metastasis model to phase i studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother. Pharmacol. 2006, 57, 761–771, doi:10.1007/s00280-005-0120-6.
[19]  Beauregard, D.A.; Thelwall, P.E.; Chaplin, D.J.; Hill, S.A.; Adams, G.E.; Brindle, K.M. Magnetic resonance imaging and spectroscopy of combretastatin a4 prodrug-induced disruption of tumour perfusion and energetic status. Br. J. Cancer. 1998, 77, 1761–1767, doi:10.1038/bjc.1998.294.
[20]  Maxwell, R.J.; Wilson, J.; Prise, V.E.; Vojnovic, B.; Rustin, G.J.; Lodge, M.A.; Tozer, G.M. Evaluation of the anti-vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced mri. NMR Biomed. 2002, 15, 89–98, doi:10.1002/nbm.754.
[21]  Robinson, S.P.; McIntyre, D.J.O.; Checkley, D.; Tessier, J.J.; Howe, F.A.; Griffiths, J.R.; Ashton, S.E.; Ryan, A.J.; Blakey, D.C.; Waterton, J.C. Tumour dose response to the antivascular agent zd6126 assessed by magnetic resonance imaging. Br. J. Canc. 2003, 88, 1592–1597, doi:10.1038/sj.bjc.6600926.
[22]  Chang, Y.C.; Yu, C.J.; Chen, C.M.; Hu, F.C.; Hsu, H.H.; Tseng, W.Y.I.; Ting-Fang Shih, T.; Yang, P.C.; Chih-Hsin Yang, J. Dynamic contrast-enhanced mri in advanced nonsmall-cell lung cancer patients treated with first-line bevacizumab, gemcitabine, and cisplatin. J. Magn. Reson. Imag. 2012, 36, 387–396, doi:10.1002/jmri.23660.
[23]  Hoff, B.A.; Bhojani, M.S.; Rudge, J.; Chenevert, T.L.; Meyer, C.R.; Galbán, S.; Johnson, T.D.; Leopold, J.S.; Rehemtulla, A.; Ross, B.D.; et al. Dce and dw-mri monitoring of vascular disruption following vegf-trap treatment of a rat glioma model. NMR Biomed. 2012, 25, 935–942, doi:10.1002/nbm.1814.
[24]  Hsu, C.Y.; Shen, Y.C.; Yu, C.W.; Hsu, C.; Hu, F.C.; Hsu, C.H.; Chen, B.B.; Wei, S.Y.; Cheng, A.L.; Shih, T.T.F. Dynamic contrast-enhanced magnetic resonance imaging biomarkers predict survival and response in hepatocellular carcinoma patients treated with sorafenib and metronomic tegafur/uracil. J. Hepatol. 2011, 55, 858–865, doi:10.1016/j.jhep.2011.01.032.
[25]  Yopp, A.; Schwartz, L.; Kemeny, N.; Gultekin, D.; G?nen, M.; Bamboat, Z.; Shia, J.; Haviland, D.; D’Angelica, M.; Fong, Y.; et al. Antiangiogenic therapy for primary liver cancer: Correlation of changes in dynamic contrast-enhanced magnetic resonance imaging with tissue hypoxia markers and clinical response. Ann. Surg. Oncol. 2011, 18, 2192–2199, doi:10.1245/s10434-011-1570-1.
[26]  Lemasson, B.; Christen, T.; Tizon, X.; Farion, R.; Fondraz, N.; Provent, P.; Segebarth, C.; Barbier, E.L.; Genne, P.; Duchamp, O.; et al. Assessment of multiparametric mri in a human glioma model to monitor cytotoxic and anti-angiogenic drug effects. NMR Biomed. 2011, 24, 473–482, doi:10.1002/nbm.1611.
[27]  Heiss, W.D.; Raab, P.; Lanfermann, H. Multimodality assessment of brain tumors and tumor recurrence. J. Nucl. Med. 2011, 52, 1585–1600, doi:10.2967/jnumed.110.084210.
[28]  Jacobs, M.A.; Ouwerkerk, R.; Wolff, A.C.; Gabrielson, E.; Warzecha, H.; Jeter, S.; Bluemke, D.A.; Wahl, R.; Stearns, V. Monitoring of neoadjuvant chemotherapy using multiparametric, (2)(3)na sodium mr, and multimodality (pet/ct/mri) imaging in locally advanced breast cancer. Breast. Cancer. Res. Treat. 2011, 128, 119–126, doi:10.1007/s10549-011-1442-1.
[29]  De Bruyne, S.; van Damme, N.; Smeets, P.; Ferdinande, L.; Ceelen, W.; Mertens, J.; van de Wiele, C.; Troisi, R.; Libbrecht, L.; Laurent, S.; et al. Value of dce-mri and fdg-pet/ct in the prediction of response to preoperative chemotherapy with bevacizumab for colorectal liver metastases. Br. J. Canc. 2012, 106, 1926–1933, doi:10.1038/bjc.2012.184.
[30]  Viel, T.; Talasila, K.M.; Monfared, P.; Wang, J.; Jikeli, J.F.; Waerzeggers, Y.; Neumaier, B.; Backes, H.; Brekka, N.; Thorsen, F.; et al. Analysis of the growth dynamics of angiogenesis-dependent and angiogenesis-independent experimental glioblastomas by multimodal small-animal pet and mri. J. Nucl. Med. 2012, 53, 1135–1145, doi:10.2967/jnumed.111.101659.
[31]  Jansen, J.F.A.; Sch?der, H.; Lee, N.Y.; Stambuk, H.E.; Wang, Y.; Fury, M.G.; Patel, S.G.; Pfister, D.G.; Shah, J.P.; Koutcher, J.A.; et al. Tumor metabolism and perfusion in head and neck squamous cell carcinoma: Pretreatment multimodality imaging with 1 h magnetic resonance spectroscopy, dynamic contrast-enhanced mri, and [18f] fdg-pet. Int.J. Radiat. Oncol. Biol. Phys. 2012, 82, 299–307, doi:10.1016/j.ijrobp.2010.11.022.
[32]  Calamante, F. Perfusion mri using dynamic-susceptibility contrast mri: Quantification issues in patient studies. Top Magn. Reson. Imag. 2010, 21, 75–85, doi:10.1097/RMR.0b013e31821e53f5.
[33]  Stanisz, G.J.; Henkelman, R.M. Gd-dtpa relaxivity depends on macromolecular content. Magn. Reson. Med. 2000, 44, 665–667, doi:10.1002/1522-2594(200011)44:5<665::AID-MRM1>3.0.CO;2-M.
[34]  Landis, C.S.; Li, X.; Telang, F.W.; Molina, P.E.; Palyka, I.; Vetek, G.; Springer, C.S. Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo. Magn. Reson. Med. 1999, 42, 467–478, doi:10.1002/(SICI)1522-2594(199909)42:3<467::AID-MRM9>3.0.CO;2-0.
[35]  Li, X.; Priest, R.A.; Woodward, W.J.; Tagge, I.J.; Siddiqui, F.; Huang, W.; Rooney, W.D.; Beer, T.M.; Garzotto, M.G.; Springer, C.S., Jr. Feasibility of shutter-speed dce-mri for improved prostate cancer detection. Magn. Reson. Med. 2012, 27, 24211.
[36]  Li, X.; Priest, R.A.; Woodward, W.J.; Siddiqui, F.; Beer, T.M.; Garzotto, M.G.; Rooney, W.D.; Springer, C.S., Jr. Cell membrane water exchange effects in prostate dce-mri. J. Magn. Reson. 2012, 218, 77–85.
[37]  Bains, L.J.; McGrath, D.M.; Naish, J.H.; Cheung, S.; Watson, Y.; Taylor, M.B.; Logue, J.P.; Parker, G.J.; Waterton, J.C.; Buckley, D.L. Tracer kinetic analysis of dynamic contrast-enhanced mri and ct bladder cancer data: A preliminary comparison to assess the magnitude of water exchange effects. Magn. Reson. Med. 2010, 64, 595–603.
[38]  Buckley, D.L.; Kershaw, L.E.; Stanisz, G.J. Cellular-interstitial water exchange and its effect on the determination of contrast agent concentration in vivo: Dynamic contrast-enhanced mri of human internal obturator muscle. Magn. Reson. Med. 2008, 60, 1011–1019, doi:10.1002/mrm.21748.
[39]  Caravan, P. Strategies for increasing the sensitivity of gadolinium based mri contrast agents. Chem. Soc. Rev. 2006, 35, 512–523, doi:10.1039/b510982p.
[40]  Weinmann, H.J.; Brasch, R.C.; Press, W.R.; Wesbey, G.E. Characteristics of gadolinium-dtpa complex: A potential nmr contrast agent. AJR Am. J. Roentgenol. 1984, 142, 619–624.
[41]  Kaewlai, R.; Abujudeh, H. Nephrogenic systemic fibrosis. Am. J. Roentgenol. 2012, 199, W17–W23, doi:10.2214/AJR.11.8144.
[42]  Wermuth, P.J.; Jimenez, S.A. Gadolinium compounds signaling through tlr 4 and tlr 7 in normal human macrophages: Establishment of a proinflammatory phenotype and implications for the pathogenesis of nephrogenic systemic fibrosis. J. Immunol. 2012, 189, 318–327, doi:10.4049/jimmunol.1103099.
[43]  Wiesinger, B.; Kehlbach, R.; Hemsen, J.; Bebin, J.; Bantleon, R.; Schwenzer, N.; Spira, D.; Claussen, C.D.; Wiskirchen, J. Effects of magnetic resonance imaging contrast agents on human umbilical vein endothelial cells and evaluation of magnetic resonance imaging contrast media-triggered transforming growth factor-beta induction in dermal fibroblasts (hsf) as a model for nephrogenic systemic fibrosis. Invest. Radiol. 2011, 46, 71–76, doi:10.1097/RLI.0b013e31820218e9.
[44]  Del Galdo, F.; Wermuth, P.J.; Addya, S.; Fortina, P.; Jimenez, S.A. Nfkappab activation and stimulation of chemokine production in normal human macrophages by the gadolinium-based magnetic resonance contrast agent omniscan: Possible role in the pathogenesis of nephrogenic systemic fibrosis. Ann. Rheum. Dis. 2010, 69, 2024–2033, doi:10.1136/ard.2010.134858.
[45]  Steger-Hartmann, T.; Raschke, M.; Riefke, B.; Pietsch, H.; Sieber, M.A.; Walter, J. The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis-A mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp. Toxicol. Pathol. 2009, 61, 537–552, doi:10.1016/j.etp.2008.11.004.
[46]  Sieber, M.A.; Pietsch, H.; Walter, J.; Haider, W.; Frenzel, T.; Weinmann, H.J. A preclinical study to investigate the development of nephrogenic systemic fibrosis: A possible role for gadolinium-based contrast media. Invest. Radiol. 2008, 43, 65–75, doi:10.1097/RLI.0b013e31815e6277.
[47]  Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H.J. Comparison of magnetic properties of mri contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40, 715–724, doi:10.1097/01.rli.0000184756.66360.d3.
[48]  Yang, C.T.; Chuang, K.H. Gd(iii) chelates for mri contrast agents: From high relaxivity to "smart", from blood pool to blood-brain barrier permeable. Med.Chem.Comm. 2012, 3, 552–565, doi:10.1039/c2md00279e.
[49]  Pathak, A.P.; Penet, M.F.; Bhujwalla, Z.M. MR molecular imaging of tumor vasculature and vascular targets. In Advances in genetics; Renata, P., Ed.; Academic Press, 2010; Volume 69, pp. 1–30.
[50]  Barrett, T.; Kobayashi, H.; Brechbiel, M.; Choyke, P.L. Macromolecular mri contrast agents for imaging tumor angiogenesis. Eur. J. Radiol. 2006, 60, 353–366, doi:10.1016/j.ejrad.2006.06.025.
[51]  Kiessling, F.; Morgenstern, B.; Zhang, C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr. Med. Chem. 2007, 14, 77–91, doi:10.2174/092986707779313516.
[52]  Evelhoch, J.L. Key factors in the acquisition of contrast kinetic data for oncology. J. Magn. Reson. Imag. 1999, 10, 254–259, doi:10.1002/(SICI)1522-2586(199909)10:3<254::AID-JMRI5>3.0.CO;2-9.
[53]  McIntyre, D.J.; Robinson, S.P.; Howe, F.A.; Griffiths, J.R.; Ryan, A.J.; Blakey, D.C.; Peers, I.S.; Waterton, J.C. Single dose of the antivascular agent, zd6126 (n-acetylcolchinol-o-phosphate), reduces perfusion for at least 96 hours in the gh3 prolactinoma rat tumor model. Neoplasia 2004, 6, 150–157, doi:10.1593/neo.03247.
[54]  Galbraith, S.M.; Maxwell, R.J.; Lodge, M.A.; Tozer, G.M.; Wilson, J.; Taylor, N.J.; Stirling, J.J.; Sena, L.; Padhani, A.R.; Rustin, G.J. Combretastatin a4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J. Clin. Oncol. 2003, 21, 2831–2842.
[55]  Medved, M.; Karczmar, G.; Yang, C.; Dignam, J.; Gajewski, T.; Kindler, H.; Vokes, E.; Maceneany, P.; Mitchel, M.; Stadler, W. Semiquantitative analysis of dynamic contrast enhanced mri in cancer patients: Variability and changes in tumor tissue over time. J. Magn. Reson. Imag. 2004, 20, 122–128, doi:10.1002/jmri.20061.
[56]  Mross, K.; Drevs, J.; Muller, M.; Medinger, M.; Marme, D.; Hennig, J.; Morgan, B.; Lebwohl, D.; Masson, E.; Ho, Y.Y.; et al. Phase i clinical and pharmacokinetic study of ptk/zk, a multiple vegf receptor inhibitor, in patients with liver metastases from solid tumours. Eur. J. Canc. 2005, 41, 1291–1299, doi:10.1016/j.ejca.2005.03.005.
[57]  Hillman, G.G.; Singh-Gupta, V.; Zhang, H.; Al-Bashir, A.K.; Katkuri, Y.; Li, M.; Yunker, C.K.; Patel, A.D.; Abrams, J.; Haacke, E.M. Dynamic contrast-enhanced magnetic resonance imaging of vascular changes induced by sunitinib in papillary renal cell carcinoma xenograft tumors. Neoplasia 2009, 11, 910–920.
[58]  Marzola, P.; Degrassi, A.; Calderan, L.; Farace, P.; Nicolato, E.; Crescimanno, C.; Sandri, M.; Giusti, A.; Pesenti, E.; Terron, A.; et al. Early antiangiogenic activity of su11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma. Clin. Canc. Res. 2005, 11, 5827–5832, doi:10.1158/1078-0432.CCR-04-2655.
[59]  Tang, J.S.; Choy, G.; Bernardo, M.; Thomasson, D.; Libutti, S.K.; Choyke, P.L. Dynamic contrast-enhanced magnetic resonance imaging in the assessment of early response to tumor necrosis factor alpha in a colon carcinoma model. Investig. Radiol. 2006, 41, 691–696, doi:10.1097/01.rli.0000233882.83800.fb.
[60]  Checkley, D.; Tessier, J.J.; Kendrew, J.; Waterton, J.C.; Wedge, S.R. Use of dynamic contrast-enhanced mri to evaluate acute treatment with zd6474, a vegf signalling inhibitor, in pc-3 prostate tumours. Br. J. Cancer 2003, 89, 1889–1895, doi:10.1038/sj.bjc.6601386.
[61]  Kuhl, C.; Mielcareck, P.; Klaschik, S.; Leutner, C.; Wardelmann, E.; Gieseke, J.; Schild, H. Dynamic breast mr imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions. Radiology 1999, 211, 101–110.
[62]  Fischer, U.; Kopka, L.; Grabbe, E. Breast carcinoma: Effect of preoperative contrast-enhanced mr imaging on the therapuetic approach. Radiology 1999, 213, 881–888.
[63]  Buadu, L.; Murakami, J.; Murayama, S.; Hashiguchi, N.; Sakai, S.; Masuda, K.; Toyoshima, S.; Kuroki, S.; Ohno, S. Breast lesions: Correlation of contrast medium enhancement patterns on mr images with histopathologic findings and tumor angiogenesis. Radiology 1996, 200, 639–649.
[64]  Ei Khouli, R.H.; Jacobs, M.A.; Mezban, S.D.; Huang, P.; Kamel, I.R.; Macura, K.J.; Bluemke, D.A. Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-t breast mr imaging. Radiology 2010, 256, 64–73, doi:10.1148/radiol.10091367.
[65]  Yabuuchi, H.; Matsuo, Y.; Okafuji, T.; Kamitani, T.; Soeda, H.; Setoguchi, T.; Sakai, S.; Hatakenaka, M.; Kubo, M.; Sadanaga, N.; et al. Enhanced mass on contrast-enhanced breast mr imaging: Lesion characterization using combination of dynamic contrast-enhanced and diffusion-weighted mr images. J. Magn. Reson.Imag. 2008, 28, 1157–1165, doi:10.1002/jmri.21570.
[66]  Qayyum, A.; Birdwell, R.L.; Daniel, B.L.; Nowels, K.W.; Jeffrey, S.S.; Agoston, T.A.; Herfkens, R.J. Mr imaging features of infiltrating lobular carcinoma of the breast: Histopathologic correlation. Am. J. Roentgenol. 2002, 178, 1227–1232.
[67]  Weinstein, S.P.; Orel, S.G.; Heller, R.; Reynolds, C.; Czerniecki, B.; Solin, L.J.; Schnall, M. Mr imaging of the breast in patients with invasive lobular carcinoma. Am. J. Roentgenol. 2001, 176, 399–406.
[68]  Orel, S.G.; Schnall, M.D.; LiVolsi, V.A.; Troupin, R.H. Suspicious breast lesions: Mr imaging with radiologic-pathologic correlation. Radiology 1994, 190, 485–493.
[69]  Buadu, L.D.; Murakami, J.; Murayama, S.; Hashiguchi, N.; Sakai, S.; Toyoshima, S.; Masuda, K.; Kuroki, S.; Ohno, S. Patterns of peripheral enhancement in breast masses: Correlation of findings on contrast medium enhanced mri with histologic features and tumor angiogenesis. J. Comput. Assist. Tomo. 1997, 21, 421–430, doi:10.1097/00004728-199705000-00016.
[70]  Galbraith, S.M.; Lodge, M.A.; Taylor, N.J.; Rustin, G.J.S.; Bentzen, S.; Stirling, J.J.; Padhani, A.R. Reproducibility of dynamic contrast-enhanced mri in human muscle and tumours: Comparison of quantitative and semi-quantitative analysis. NMR Biomed. 2002, 15, 132–142, doi:10.1002/nbm.731.
[71]  Kety, S.S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 1951, 3, 1–41.
[72]  Shames, D.M.; Kuwatsuru, R.; Vexler, V.; Mühler, A.; Brasch, R.C. Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: A quantitative noninvasive technique. Magn. Reson. Med. 1993, 29, 616–622, doi:10.1002/mrm.1910290506.
[73]  Faranesh, A.Z.; Kraitchman, D.L.; McVeigh, E.R. Measurement of kinetic parameters in skeletal muscle by magnetic resonance imaging with an intravascular agent. Magn. Reson. Med. 2006, 55, 1114–1123, doi:10.1002/mrm.20884.
[74]  Daldrup, H.; Shames, D.; Wendland, M.; Okuhata, Y.; Link, T.; Rosenau, W.; Lu, Y.; Brasch, R. Correlation of dynamic contrast-enhanced mr imaging with histologic tumor grade: Comparison of macromolecular and small-molecular contrast media. Am. J. Roentgenol. 1998, 171, 941–949.
[75]  Bradley, D.P.; Tessier, J.L.; Checkley, D.; Kuribayashi, H.; Waterton, J.C.; Kendrew, J.; Wedge, S.R. Effects of azd2171 and vandetanib (zd6474, zactima) on haemodynamic variables in an sw620 human colon tumour model: An investigation using dynamic contrast-enhanced mri and the rapid clearance blood pool contrast agent, p792 (gadomelitol). NMR Biomed. 2008, 21, 42–52, doi:10.1002/nbm.1161.
[76]  Wedge, S.R.; Kendrew, J.; Hennequin, L.F.; Valentine, P.J.; Barry, S.T.; Brave, S.R.; Smith, N.R.; James, N.H.; Dukes, M.; Curwen, J.O.; et al. Azd2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Canc. Res. 2005, 65, 4389–4400.
[77]  Luo, Y.; Jiang, F.; Cole, T.; Hradil, V.; Reuter, D.; Chakravartty, A.; Albert, D.; Davidsen, S.; Cox, B.; McKeegan, E.; et al. A novel multi-targeted tyrosine kinase inhibitor, linifanib (abt-869), produces functional and structural changes in tumor vasculature in an orthotopic rat glioma model. Cancer Chemotherapy and Pharmacology 2012, 69, 911–921, doi:10.1007/s00280-011-1740-7.
[78]  Nielsen, T.; Murata, R.; Maxwell, R.J.; St?dkilde-J?rgensen, H.; ?stergaard, L.; Horsman, M.R. Preclinical studies to predict efficacy of vascular changes induced by combretastatin a-4 disodium phosphate in patients. International Journal of Radiation Oncology*Biology*Physics 2008, 70, 859–866, doi:10.1016/j.ijrobp.2007.10.012.
[79]  Kingsley, P.B. Methods of measuring spin-lattice (t1) relaxation times: An annotated bibliography. Concepts Magn. Reson. 1999, 11, 243–276, doi:10.1002/(SICI)1099-0534(1999)11:4<243::AID-CMR5>3.0.CO;2-C.
[80]  Guilfoyle, D.N.; Dyakin, V.V.; O’Shea, J.; Pell, G.S.; Helpern, J.A. Quantitative measurements of proton spin-lattice (t1) and spin-spin (t2) relaxation times in the mouse brain at 7.0 t. Magn. Reson. Med. 2003, 49, 576–580, doi:10.1002/mrm.10371.
[81]  Loveless, M.E.; Halliday, J.; Liess, C.; Xu, L.; Dortch, R.D.; Whisenant, J.; Waterton, J.C.; Gore, J.C.; Yankeelov, T.E. A quantitative comparison of the influence of individual versus population-derived vascular input functions on dynamic contrast enhanced-mri in small animals. Magn. Reson. Med. 2012, 67, 226–236, doi:10.1002/mrm.22988.
[82]  Haase, A.; Frahm, J.; Matthaei, D.; Hanicke, W.; Merboldt, K.D. Flash imaging. Rapid nmr imaging using low flip-angle pulses. J. Magn. Reson. 1986, 67, 258–266.
[83]  Haacke, M.; Brown, R.; Thompson, M.; Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design; Wiley-Liss: Hoboken, NJ, USA, 1999.
[84]  Loveless, M.E.; Whisenant, J.G.; Wilson, K.; Lyshchik, A.; Sinha, T.K.; Gore, J.C.; Yankeelov, T.E. Coregistration of ultrasonography and magnetic resonance imaging with a preliminary investigation of the spatial colocalization of vascular endothelial growth factor receptor 2 expression and tumor perfusion in a murine tumor model. Mol. Imag. 2009, 8, 187–198.
[85]  Yankeelov, T.E.; Niermann, K.J.; Huamani, J.; Kim, D.W.; Quarles, C.C.; Fleischer, A.C.; Hallahan, D.E.; Price, R.R.; Gore, J.C. Correlation between estimates of tumor perfusion from microbubble contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging. J. Ultrasound. Med. 2006, 25, 487–497.
[86]  Yankeelov, T.E.; Gore, J.C. Dynamic contrast enhanced magnetic resonance imaging in oncology: Theory, data acquisition, analysis, and examples. Curr. Med. Imag. Rev. 2009, 3, 91–107, doi:10.2174/157340507780619179.
[87]  Hornak, J.P.; Szumowski, J.; Bryant, R.G. Magnetic field mapping. Magn. Reson. Med. 1988, 6, 158–163, doi:10.1002/mrm.1910060204.
[88]  Yarnykh, V.L. Actual flip-angle imaging in the pulsed steady state: A method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn. Reson. Med. 2007, 57, 192–200, doi:10.1002/mrm.21120.
[89]  Loveless, M.E.; Lawson, D.; Collins, M.; Nadella, M.V.; Reimer, C.; Huszar, D.; Halliday, J.; Waterton, J.C.; Gore, J.C.; Yankeelov, T.E. Comparisons of the efficacy of a jak 1/2 inhibitor (azd 1480) with a vegf signaling inhibitor (cediranib) and sham treatments in mouse tumors using dce-mri, dw-mri, and histology. Neoplasia 2012, 14, 54–64.
[90]  Benjaminsen, I.C.; Graff, B.A.; Brurberg, K.G.; Rofstad, E.K. Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced mri: A preclinical study of human melanoma xenografts. Magn. Reson. Med. 2004, 52, 269–276, doi:10.1002/mrm.20149.
[91]  Kim, H.; Folks, K.; Guo, L.; Stockard, C.; Fineberg, N.; Grizzle, W.; George, J.; Buchsbaum, D.; Morgan, D.; Zinn, K. Dce-mri detects early vascular response in breast tumor xenografts following anti-dr5 therapy. Mol. Imag. Biol. 2011, 13, 94–103, doi:10.1007/s11307-010-0320-2.
[92]  Li, X.; Rooney, W.D.; Várallyay, C.G.; Gahramanov, S.; Muldoon, L.L.; Goodman, J.A.; Tagge, I.J.; Selzer, A.H.; Pike, M.M.; Neuwelt, E.A.; et al. Dynamic-contrast-enhanced-mri with extravasating contrast reagent: Rat cerebral glioma blood volume determination. J. Magn. Reson. 2010, 206, 190–199.
[93]  Skinner, J.; Yankeelov, T.E.; Peterson, T.; Does, M. Comparison of dynamic contrast enhanced mri and quantitative spect in a rat glioma model. Contrast Media Mol. Imag. 2012. in press.
[94]  Kim, J.H.; Im, G.H.; Yang, J.; Choi, D.; Lee, W.J.; Lee, J.H. Quantitative dynamic contrast-enhanced mri for mouse models using automatic detection of the arterial input function. NMR Biomed. 2012, 25, 674–684, doi:10.1002/nbm.1784.
[95]  Yankeelov, T.E.; Luci, J.J.; Lepage, M.; Li, R.; Debusk, L.; Lin, P.C.; Price, R.R.; Gore, J.C. Quantitative pharmacokinetic analysis of dce-mri data without an arterial input function: A reference region model. Magn. Reson. Imag. 2005, 23, 519–529, doi:10.1016/j.mri.2005.02.013.
[96]  Fritz-Hansen, T.; Rostrup, E.; Larsson, H.B.; Sondergaard, L.; Ring, P.; Henriksen, O. Measurement of the arterial concentration of gd-dtpa using mri: A step toward quantitative perfusion imaging. Magn. Reson. Med. 1996, 36, 225–231, doi:10.1002/mrm.1910360209.
[97]  Van Osch, M.J.P.; Vonken, E.-j.P.A.; Viergever, M.A.; van der Grond, J.; Bakker, C.J.G. Measuring the arterial input function with gradient echo sequences. Magn. Reson. Med. 2003, 49, 1067–1076, doi:10.1002/mrm.10461.
[98]  Port, R.E.; Knopp, M.V.; Hoffmann, U.; Milker-Zabel, S.; Brix, G. Multicompartment analysis of gadolinium chelate kinetics: Blood-tissue exchange in mammary tumors as monitored by dynamic mr imaging. J. Magn. Reson. Med. 1999, 10, 233–241.
[99]  Port, R.E.; Knopp, M.V.; Brix, G. Dynamic contrast-enhanced mri using gd-dtpa: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn. Reson. Med. 2001, 45, 1030–1038, doi:10.1002/mrm.1137.
[100]  Parker, G.J.; Barker, G.J.; Tofts, P.S. Accurate multislice gradient echo t (1) measurement in the presence of non-ideal rf pulse shape and rf field nonuniformity. Magn. Reson. Med. 2001, 45, 838–845, doi:10.1002/mrm.1112.
[101]  Parker, G.J.M.; Roberts, C.; Macdonald, A.; Buonaccorsi, G.A.; Cheung, S.; Buckley, D.L.; Jackson, A.; Watson, Y.; Davies, K.; Jayson, G.C. Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced mri. Magn. Reson. Med. 2006, 56, 993–1000, doi:10.1002/mrm.21066.
[102]  McGrath, D.M.; Bradley, D.P.; Tessier, J.L.; Lacey, T.; Taylor, C.J.; Parker, G.J.M. Comparison of model-based arterial input functions for dynamic contrast-enhanced mri in tumor bearing rats. Magn. Reson. Med. 2009, 61, 1173–1184, doi:10.1002/mrm.21959.
[103]  Li, X.; Welch, E.B.; Arlinghaus, L.R.; Chakravarthy, A.B.; Xu, L.; Farley, J.; Loveless, M.E.; Mayer, I.A.; Kelley, M.C.; Meszoely, I.M.; et al. A novel aif tracking method and comparison of dce-mri parameters using individual and population-based aifs in human breast cancer. Phys. Med. Biol. 2011, 56, 5753–5769, doi:10.1088/0031-9155/56/17/018.
[104]  Pickup, S.; Zhou, R.; Glickson, J. Mri estimation of the arterial input function in mice. Acad. Radiol. 2003, 10, 963–968, doi:10.1016/S1076-6332(03)00291-5.
[105]  Kovar, D.A.; Lewis, M.; Karczmar, G.S. A new method for imaging perfusion and contrast extraction fraction: Input functions derived from reference tissues. J. Magn. Reson. Imag. 1998, 8, 1126–1134, doi:10.1002/jmri.1880080519.
[106]  Yang, C.; Karczmar, G.S.; Medved, M.; Stadler, W.M. Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced mri studies: Fundamental concepts and simulations. Magn. Reson. Med. 2004, 52, 1110–1117, doi:10.1002/mrm.20243.
[107]  Heisen, M.; Fan, X.; Buurman, J.; van Riel, V.; Karczmar, G.; ter Haar Romeny, B. The use of a reference tissue arterial input function with low-temporal-resolution dce-mri data. Phys. Med. Biol. 2010, 55, 4871–4883, doi:10.1088/0031-9155/55/16/016.
[108]  Yankeelov, T.E.; Cron, G.O.; Addison, C.L.; Wallace, J.C.; Wilkins, R.C.; Pappas, B.A.; Santyr, G.E.; Gore, J.C. Comparison of a reference region model with direct measurement of an aif in the analysis of dce-mri data. Magn. Reson. Med. 2007, 57, 353–361, doi:10.1002/mrm.21131.
[109]  Yankeelov, T.E.; DeBusk, L.M.; Billheimer, D.D.; Luci, J.J.; Lin, P.C.; Price, R.R.; Gore, J.C. Repeatability of a reference region model for analysis of murine dce-mri data at 7 t. J. Magn. Reson. Imag. 2006, 24, 1140–1147, doi:10.1002/jmri.20729.
[110]  Walker-Samuel, S.; Parker, C.C.; Leach, M.O.; Collins, D.J. Reproducibility of reference tissue quantification of dynamic contrast-enhanced data: Comparison with a fixed vascular input function. Phys. Med. Biol. 2007, 52, 75–89, doi:10.1088/0031-9155/52/1/006.
[111]  Padhani, A.R.; Hayes, C.; Landau, S.; Leach, M.O. Reproducibility of quantitative dynamic mri or normal human tissues. NMR Biomed. 2001, 15, 143–153.
[112]  Morgan, B.; Utting, J.F.; Higginson, A.; Thomas, A.L.; Steward, W.P.; Horsfield, M.A. A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced mr imaging. Br. J. Cancer 2006, 94, 1420–1427, doi:10.1038/sj.bjc.6603140.
[113]  Barnes, S.; Whisenant, J.; Loveless, M.; Ayers, G.; Yankeelov, T. Assessing the reproducibility of dynamic contrast enhanced magnetic resonance imaging in a murine model of breast cancer. Magn. Reson. Med. 2012, doi:10.1002/mrm.24422.
[114]  Fueger, B.J.; Czernin, J.; Hildebrandt, I.; Tran, C.; Halpern, B.S.; Stout, D.; Phelps, M.E.; Weber, W.A. Impact of animal handling on the results of 18f-fdg pet studies in mice. J. Nucl. Med. 2006, 47, 999–1006.
[115]  Norris, D.G. High field human imaging. J. Magn. Reson. Imag. 2003, 18, 519–529, doi:10.1002/jmri.10390.
[116]  Padhani, A.R.; Liu, G.; Koh, D.M.; Chenevert, T.L.; Thoeny, H.C.; Takahara, T.; Dzik-Jurasz, A.; Ross, B.D.; Van Cauteren, M.; Collins, D.; et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 2009, 11, 102–125.
[117]  Cheng, H.-L.M.; Wallis, C.; Shou, Z.; Farhat, W.A. Quantifying angiogenesis in vegf-enhanced tissue-engineered bladder constructs by dynamic contrast-enhanced mri using contrast agents of different molecular weights. J. Magn. Reson. Imag. 2007, 25, 137–145, doi:10.1002/jmri.20787.
[118]  Ren, J.; Huan, Y.; Wang, H.; Chang, Y.J.; Zhao, H.T.; Ge, Y.L.; Liu, Y.; Yang, Y. Dynamic contrast-enhanced mri of benign prostatic hyperplasia and prostatic carcinoma: Correlation with angiogenesis. Clin. Radiol. 2008, 63, 153–159, doi:10.1016/j.crad.2007.07.023.
[119]  Hulka, C.A.; Edmister, W.B.; Smith, B.L.; Tan, L.; Sgroi, D.C.; Campbell, T.; Kopans, D.B.; Weisskoff, R.M. Dynamic echo-planar imaging of the breast: Experience in diagnosing breast carcinoma and correlation with tumor angiogenesis. Radiology 1997, 205, 837–842.
[120]  Yao, W.W.; Zhang, H.; Ding, B.; Fu, T.; Jia, H.; Pang, L.; Song, L.; Xu, W.; Song, Q.; Chen, K.; et al. Rectal cancer: 3 d dynamic contrast-enhanced mri; correlation with microvascular density and clinicopathological features. Radiol. Med. 2011, 116, 366–374, doi:10.1007/s11547-011-0628-2.
[121]  Haris, M.; Husain, N.; Singh, A.; Awasthi, R.; Singh Rathore, R.K.; Husain, M.; Gupta, R.K. Dynamic contrast-enhanced (dce) derived transfer coefficient (ktrans) is a surrogate marker of matrix metalloproteinase 9 (mmp-9) expression in brain tuberculomas. J. Magn. Reson. Imag. 2008, 28, 588–597, doi:10.1002/jmri.21491.
[122]  Orth, R.C.; Bankson, J.; Price, R.; Jackson, E.F. Comparison of single-tracer and dual-tracer pharmacokinetic modeling of dynamic contrast-enhanced mri data using low, medium, and high molecular weight contrast agents. Magn. Reson. Med. 2007, 58, 705–716, doi:10.1002/mrm.21411.
[123]  Reitan, N.K.; Thuen, M.; Goa, P.E.; Davies, C.D.L. Characterization of tumor microvascular structure and permeability: Comparison between magnetic resonance imaging and intravital confocal imaging. J. Biomed. Optics 2010, 15, 036004, doi:10.1117/1.3431095.
[124]  Mayr, N.A.; Hawighorst, H.; Yuh, W.T.C.; Essig, M.; Magnotta, V.A.; Knopp, M.V. Mr microcirculation assessment in cervical cancer: Correlations with histomorphological tumor markers and clinical outcome. J. Magn. Reson. Imag. 1999, 10, 267–276, doi:10.1002/(SICI)1522-2586(199909)10:3<267::AID-JMRI7>3.0.CO;2-Y.
[125]  Egeland, T.A.M.; Simonsen, T.G.; Gaustad, J.V.; Gulliksrud, K.; Ellingsen, C.; Rofstad, E.K. Dynamic contrast-enhanced magnetic resonance imaging of tumors: Preclinical validation of parametric images. Radiat. Res. 2009, 172, 339–347, doi:10.1667/RR1787.1.
[126]  Aref, M.; Chaudhari, A.R.; Bailey, K.L.; Aref, S.; Wiener, E.C. Comparison of tumor histology to dynamic contrast enhanced magnetic resonance imaging-based physiological estimates. Magn. Reson. Imag. 2008, 26, 1279–1293, doi:10.1016/j.mri.2008.02.015.
[127]  Sinha, T.K.; Khatib-Shahidi, S.; Yankeelov, T.E.; Mapara, K.; Ehtesham, M.; Cornett, D.S.; Dawant, B.M.; Caprioli, R.M.; Gore, J.C. Integrating spatially resolved three-dimensional maldi ims with in vivo magnetic resonance imaging. Nat. Meth. 2008, 5, 57–59, doi:10.1038/nmeth1147.
[128]  Meyer, C.R.; Moffat, B.A.; Kuszpit, K.K.; Bland, P.L.; McKeever, P.E.; Johnson, T.D.; Chenevert, T.L.; Rehemtulla, A.; Ross, B.D. A methodology for registration of a histological slide and in vivo mri volume based on optimizing mutual information. Mol. Imag. 2006, 5, 16–23.
[129]  Zanzonico, P.B. Broad-spectrum multi-modality image registration: From pet, ct, and mri to autoradiography, microscopy, and beyond. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 1, 1584–1588.
[130]  Naish, J.H.; McGrath, D.M.; Bains, L.J.; Passera, K.; Roberts, C.; Watson, Y.; Cheung, S.; Taylor, M.B.; Logue, J.P.; Buckley, D.L.; et al. Comparison of dynamic contrast-enhanced mri and dynamic contrast-enhanced ct biomarkers in bladder cancer. Magn. Reson. Med. 2011, 66, 219–226, doi:10.1002/mrm.22774.
[131]  Korporaal, J.G.; van den Berg, C.A.; van Osch, M.J.; Groenendaal, G.; van Vulpen, M.; van der Heide, U.A. Phase-based arterial input function measurements in the femoral arteries for quantification of dynamic contrast-enhanced (dce) mri and comparison with dce-ct. Magn. Reson. Med. 2011, 66, 1267–1274, doi:10.1002/mrm.22905.
[132]  Kierkels, R.G.J.; Backes, W.H.; Janssen, M.H.M.; Buijsen, J.; Beets-Tan, R.G.H.; Lambin, P.; Lammering, G.; Oellers, M.C.; Aerts, H.J.W.L. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 400–408, doi:10.1016/j.ijrobp.2009.05.015.
[133]  Ng, C.S.; Waterton, J.C.; Kundra, V.; Brammer, D.; Ravoori, M.; Han, L.; Wei, W.; Klumpp, S.; Johnson, V.E.; Jackson, E.F. Reproducibility and comparison of dce-mri and dce-ct perfusion parameters in a rat tumor model. Tech. Canc. Res. Treat. 2012, 11, 279–288.
[134]  Donahue, K.M.; Weisskoff, R.M.; Parmelee, D.J.; Callahan, R.J.; Wilkinson, R.A.; Mandeville, J.B.; Rosen, B.R. Dynamic gd-dtpa enhanced mri measurement of tissue cell volume fraction. Magn. Reson. Med. 1995, 34, 423–432, doi:10.1002/mrm.1910340320.
[135]  Pellerin, M.; Yankeelov, T.E.; Lepage, M. Incorporating contrast agent diffusion into the analysis of dce-mri data. Magn. Reson. Med. 2007, 58, 1124–1134, doi:10.1002/mrm.21400.
[136]  Einstein, A. über die von der molekularkinetischen theorie der w?rme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys. 1905, 322, 549–560, doi:10.1002/andp.19053220806.
[137]  Anderson, A.W.; Xie, J.; Pizzonia, J.; Bronen, R.A.; Spencer, D.D.; Gore, J.C. Effects of cell volume fraction changes on apparent diffusion in human cells. Magn. Reson. Imag. 2000, 18, 689–695, doi:10.1016/S0730-725X(00)00147-8.
[138]  Yankeelov, T.E.; Lepage, M.; Chakravarthy, A.; Broome, E.E.; Niermann, K.J.; Kelley, M.C.; Meszoely, I.; Mayer, I.A.; Herman, C.R.; McManus, K.; et al. Integration of quantitative dce-mri and adc mapping to monitor treatment response in human breast cancer: Initial results. Magn. Reson. Imag. 2007, 25, 1–13.
[139]  Mills, S.J.; Soh, C.; Rose, C.J.; Cheung, S.; Zhao, S.; Parker, G.J.M.; Jackson, A. Candidate biomarkers of extravascular extracellular space: A direct comparison of apparent diffusion coefficient and dynamic contrast-enhanced mr imaging-Derived measurement of the volume of the extravascular extracellular space in glioblastoma multiforme. Am. J. Neuroradiol. 2010, 31, 549–553, doi:10.3174/ajnr.A1844.
[140]  Arlinghaus, L.R.; Li, X.; Rahman, A.R.; Welch, E.B.; Xu, L.; Gore, J.C.; Yankeelov, T.E. On the relationship between the apparent diffusion coefficient and extravascular extracellular volume fraction in human breast cancer. Magn. Reson. Imag. 2011, 29, 630–638, doi:10.1016/j.mri.2011.02.004.
[141]  Dunphy, M.P.S.; Lewis, J.S. Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with pet. J. Nucl. Med. 2009, 50, 106–121, doi:10.2967/jnumed.108.057281.
[142]  Dearling, J.; Lewis, J.; Mullen, G.; Welch, M.; Blower, P. Copper bis (thiosemicarbazone) complexes as hypoxia imaging agents: Structure-activity relationships. J. Biol. Inorg. Chem. 2002, 7, 249–259, doi:10.1007/s007750100291.
[143]  Lewis, J.S.; Welch, M.J. Pet imaging of hypoxia. Q. J. Nucl. Med. Mol. Imag. 2001, 45, 183–188.
[144]  Cho, H.; Ackerstaff, E.; Carlin, S.; Lupu, M.E.; Wang, Y.; Rizwan, A.; O’Donoghue, J.; Ling, C.C.; Humm, J.L.; Zanzonico, P.B.; et al. Noninvasive multimodality imaging of the tumor microenvironment: Registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia 2009, 11, 247–259.
[145]  Coleman, C.N. Hypoxia in tumors: A paradigm for the approach to biochemical and physiologic heterogeneity. J. Natl. Canc. Inst. 1988, 80, 310–317, doi:10.1093/jnci/80.5.310.
[146]  Jansen, J.F.; Schoder, H.; Lee, N.Y.; Wang, Y.; Pfister, D.G.; Fury, M.G.; Stambuk, H.E.; Humm, J.L.; Koutcher, J.A.; Shukla-Dave, A. Noninvasive assessment of tumor microenvironment using dynamic contrast-enhanced magnetic resonance imaging and 18 f-fluoromisonidazole positron emission tomography imaging in neck nodal metastases. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1403–1410, doi:10.1016/j.ijrobp.2009.07.009.
[147]  Shaw, R.J. Glucose metabolism and cancer. Curr. Opin. Cell. Biol. 2006, 18, 598–608, doi:10.1016/j.ceb.2006.10.005.
[148]  Metz, S.; Ganter, C.; Lorenzen, S.; van Marwick, S.; Herrmann, K.; Lordick, F.; Nekolla, S.G.; Rummeny, E.J.; Wester, H.J.; Brix, G.; et al. Phenotyping of tumor biology in patients by multimodality multiparametric imaging: Relationship of microcirculation, αvβ3 expression, and glucose metabolism. J. Nucl. Med. 2010, 51, 1691–1698, doi:10.2967/jnumed.110.077719.
[149]  Partridge, S.C.; Vanantwerp, R.K.; Doot, R.K.; Chai, X.; Kurland, B.F.; Eby, P.R.; Specht, J.M.; Dunnwald, L.K.; Schubert, E.K.; Lehman, C.D.; et al. Association between serial dynamic contrast-enhanced mri and dynamic 18 f-fdg pet measures in patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer. J. Mag. Reson. Imag. 2010, 32, 1124–1131, doi:10.1002/jmri.22362.
[150]  Huang, J.; Chunta, J.L.; Amin, M.; Lee, D.Y.; Grills, I.S.; Wong, C.Y.; Yan, D.; Marples, B.; Martinez, A.A.; Wilson, G.D. Detailed characterization of the early response of head-neck cancer xenografts to irradiation using (18) f-fdg-pet imaging. Int. J. Radiat. Oncol. Biol. Phys. 2012, 11, 11.
[151]  Mani, S.; Chen, Y.; Arlinghaus, L.; Li, X.; Chakravarthy, A.; Bhave, S.; Welch, E.B.; Levy, M.; Yankeelov, T.E. Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative mri and machine learning. AMIA Annu. Symp. Proc. 2011, 868–877.
[152]  Cheebsumon, P.; Velasquez, L.; Hoekstra, C.; Hayes, W.; Kloet, R.; Hoetjes, N.; Smit, E.; Hoekstra, O.; Lammertsma, A.; Boellaard, R. Measuring response to therapy using fdg pet: Semi-quantitative and full kinetic analysis. Eur. J. Nucl. Med. Mol. Imag. 2011, 38, 832–842, doi:10.1007/s00259-010-1705-9.
[153]  Braren, R.; Altomonte, J.; Settles, M.; Neff, F.; Esposito, I.; Ebert, O.; Schwaiger, M.; Rummeny, E.; Steingoetter, A. Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J. Hepatol. 2011, 55, 1034–1040, doi:10.1016/j.jhep.2011.01.049.
[154]  Sala, E.; Kataoka, M.Y.; Priest, A.N.; Gill, A.B.; McLean, M.A.; Joubert, I.; Graves, M.J.; Crawford, R.A.F.; Jimenez-Linan, M.; Earl, H.M.; et al. Advanced ovarian cancer: Multiparametric mr imaging demonstrates response- and metastasis-specific effects. Radiology 2012, 263, 149–159, doi:10.1148/radiol.11110175.
[155]  Brix, G.; Semmler, W.; Port, R.E.; Schad, L.R.; Layer, G.; Lorenz, W.J. Pharmacokinetic parameters in cns gd-dtpa enhanced mr imaging. J. Comput. Assist. Tomo. 1991, 15, 621–628, doi:10.1097/00004728-199107000-00018.
[156]  Larsson, H.B.W.; Stubgard, M.; Frederiksen, J.L.; Jensen, M.; Henriksen, O.; Paulson, O.B. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-dtpa in patients with multiple sclerosis and brain tumors. Magn. Reson. Med. 1990, 16, 117–131, doi:10.1002/mrm.1910160111.
[157]  Tofts, P.S.; Kermode, A.G. Measurement of the blood-brain barrier permeability and leakage space using dynamic mr imaging. 1. Fundamental concepts. Magn. Reson. Med. 1991, 17, 357–367, doi:10.1002/mrm.1910170208.
[158]  Donahue, M.; Blakeley, J.; Zhou, J.; Pomper, M.; Laterra, J.; van Zijl, P. Evaluation of human brain tumor heterogeneity using mutliple t 1-based mri signal weighting approaches. Magn. Reson. Med. 2008, 59, 336–344, doi:10.1002/mrm.21467.
[159]  Jia, G.; O’Dell, C.; Heverhagen, J.; Xang, X.; Liang, J.; Jacko, R.; Sammet, S.; Pellas, T.; Cole, P.; Knopp, M.V. Colorectal liver metastases: Contrast agent diffusion coefficient for quantification of contrast enhancement heterogeneity at mr imaging. Radiology 2008, 248, 901–909, doi:10.1148/radiol.2491071936.
[160]  Landis, C.; Li, X.; Telang, F.; Coderre, J.; Micca, P.; Rooney, W.; Latour, L.; Vetek, G.; Palyka, I.; Springer, C.S., Jr. Determination of the mri contrast agent concentration time course in vivo following bolus injection: Effect of equilibrium transcytolemmal water exchange. Magn. Reson. Med. 2000, 44, 563–574, doi:10.1002/1522-2594(200010)44:4<563::AID-MRM10>3.0.CO;2-#.
[161]  Yankeelov, T.E.; Rooney, W.D.; Huang, W.; Dyke, J.P.; Li, X.; Tudorica, A.; Lee, J.H.; Koutcher, J.A.; Springer, C.S. Evidence for shutter-speed variation in cr bolus-tracking studies of human pathology. NMR Biomed. 2005, 18, 173–185, doi:10.1002/nbm.938.
[162]  Yankeelov, T.E.; Rooney, W.D.; Li, X.; Springer, C.S., Jr. Variation of the relaxographic “shutter-speed” for transcytolemmal water exchange affects the cr bolus-tracking curve shape. Magn. Reson. Med. 2003, 50, 1151–1169, doi:10.1002/mrm.10624.
[163]  Li, X.; Huang, W.; Yankeelov, T.E.; Tudorica, A.; Rooney, W.D.; Springer, C.S. Shutter-speed analysis of contrast reagent bolus-tracking data: Preliminary observations in benign and malignant breast disease. Magn. Reson. Med. 2005, 53, 724–729, doi:10.1002/mrm.20405.
[164]  Zhou, R.; Pickup, S.; Yankeelov, T.E.; Springer, C.S., Jr.; Glickson, J.D. Simultaneous measurement of arterial input function and tumor pharmacokinetics in mice by dynamic contrast enhanced imaging: Effects of transcytolemmal water exchange. Magn. Reson. Med. 2004, 52, 248–257, doi:10.1002/mrm.20143.
[165]  Donahue, K.M.; Weisskoff, R.M.; Burstein, D. Water diffusion and exchange as they influence contrast enhancement. J. Magn. Reson. Imag. 1997, 7, 102–110, doi:10.1002/jmri.1880070114.
[166]  McConnell, H.M. Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 1958, 28, 430–431, doi:10.1063/1.1744152.
[167]  Woessner, D.E. Nuclear transfer effects in nuclear magnetic resonance pulse experiments. J. Chem. Phys. 1961, 35, 41–48, doi:10.1063/1.1731931.
[168]  Huang, W.; Tudorica, L.A.; Li, X.; Thakur, S.B.; Chen, Y.; Morris, E.A.; Tagge, I.J.; Korenblit, M.E.; Rooney, W.D.; Koutcher, J.A.; et al. Discrimination of benign and malignant breast lesions by using shutter-speed dynamic contrast-enhanced mr imaging. Radiology 2011, 261, 394–403, doi:10.1148/radiol.11102413.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413