It is shown that each element s in the normalizer of the automorphism group Aut(G) of a simple graph G with labeled vertex set V is an Aut(G) invariant isomorphism between G and the graph obtained from G by the s permutation of V—i.e., s is a hidden permutation symmetry of G. A simple example illustrates the theory and the applied notion of system robustness for reconfiguration under symmetry constraint (RUSC) is introduced.
References
[1]
Weyl, H. Symmetry; Princeton University Press: Princeton, NJ, USA, 1952.
[2]
Cornwell, J.F. Group Theory in Physics; Academic Press: San Diego, CA, USA, 1997; p. 97.
[3]
Lulek, B.; Lulek, T. Scaling symmetries for linear polymer chains. Acta Phys. Pol. B 1991, 22, 287–302.
[4]
Michel, L. Symmetry defects and broken symmetry. Configurations Hidden symmetry. Rev. Mod. Phys. 1980, 52, 617–651, doi:10.1103/RevModPhys.52.617.
[5]
Antonelli, F.; Stewart, I. Symmetry and synchrony in coupled cell networks 1: Fixed-point spaces. Int. J. Bifurc. Chaos 2006, 16, 559–577, doi:10.1142/S0218127406015167.
[6]
Kelarev, A.; Ryan, J.; Yearwood, J. Cayley graphs as classifiers for data mining: The influence of asymmetries. Discret. Math. 2009, 309, 5360–5369, doi:10.1016/j.disc.2008.11.030.
[7]
Kelarev, A. Graph Algebras and Automata; Marcel Dekker: New York, NY, USA, 2003.
[8]
Behzad, M.; Chartrand, G.; Lesniak-Foster, L. Graphs and Digraphs; Wadsworth International Group: Belmont, CA, USA, 1979.
[9]
Rotman, J. An Introduction to the Theory of Groups; Allyn and Bacon, Inc.: Newton, MA, USA, 1984.
[10]
Xiao, Y.; Xiong, M.; Wang, W.; Wang, H. Emergence of symmetry in complex networks. Phys. Rev. E 2008, 77, 066108:1–066108:10.
[11]
Wang, H.; Yan, G.; Xiao, Y. Symmetry in world trade network. J. Syst. Sci. Complex. 2009, 22, 280–290, doi:10.1007/s11424-009-9163-9.