全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Symmetry  2012 

Supersymmetric Extensions of Non-Relativistic Scaling Algebras

DOI: 10.3390/sym4030517

Keywords: supersymmetry, non-relativistic limit, scale invariance, AdS/CFT

Full-Text   Cite this paper   Add to My Lib

Abstract:

An exciting subject in string theory is to consider some applications of the AdS/CFT correspondence to realistic systems like condensed matter systems. Since most of such systems are non-relativistic, an anisotropic scaling symmetry with the general value of dynamical critical exponent z plays an important role in constructing the gravity duals for non-relativistic field theories. Supersymmetric extensions of symmetry algebras including the anisotropic scaling are very helpful to consider holographic relations accurately. We give a short summary on the classification of superalgebras with the anisotropic scaling as subalgebras of the following Lie superalgebras, psu(2,2|4), osp(8|4) and osp (8*|4), which appear in the study of AdS/CFT in type IIB string and M theories. It contains supersymmetric extensions of Schr?dinger algebra and Lifshitz algebra.

References

[1]  Maldacena, J.M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252.
[2]  Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from non-critical string theory. Phys. Lett. B 1998, 428, 105–114, doi:10.1016/S0370-2693(98)00377-3.
[3]  Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291.
[4]  Hartnoll, S.A. Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 2009, 26, 224002:1–224002:61.
[5]  Sachdev, S. Condensed matter and AdS/CFT. Lect. Notes Phys. 2011, 828, 273–311, doi:10.1007/978-3-642-04864-7_9.
[6]  Son, D.T. Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. Phys. Rev. D 2008, 78, 046003:1–046003:7.
[7]  Balasubramanian, K.; McGreevy, J. Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 2008, 101, 061601:1–061601:4.
[8]  Kachru, S.; Liu, X.; Mulligan, M. Gravity Duals of Lifshitz-like Fixed Points. Phys. Rev. D 2008, 78, 106005:1–106005:8.
[9]  Schafer-Nameki, S.; Yamazaki, M.; Yoshida, K. Coset Construction for Duals of Non-relativistic CFTs. J. High Energy Phys. 2009.
[10]  Hagen, C.R. Scale and conformal transformations in galilean-covariant field theory. Phys. Rev. D 1972, 5, 377–388.
[11]  Niederer, U. The maximal kinematical invariance group of the free Schrodinger equation. Helv. Phys. Acta 1972, 45, 802–810.
[12]  Henkel, M. Schrodinger invariance in strongly anisotropic critical systems. J. Statist. Phys. 1994, 75, 1023–1061, doi:10.1007/BF02186756.
[13]  Nishida, Y.; Son, D.T. Nonrelativistic conformal field theories. Phys. Rev. D 2007, 76, 086004:1–086004:14.
[14]  Duval, C.; Horvathy, P.A. On Schrodinger superalgebras. J. Math. Phys. 1994, 35, 2516–2538, doi:10.1063/1.530521.
[15]  Henkel, M.; Unterberger, J. Supersymmetric extensions of Schr?dinger invariance. Nucl. Phys. B 2006, 746, 155–201, doi:10.1016/j.nuclphysb.2006.03.026.
[16]  Sakaguchi, M.; Yoshida, K. Super Schr?dinger algebra in AdS/CFT. J. Math. Phys. 2008, 49, 102302:1–102302:13.
[17]  Sakaguchi, M.; Yoshida, K. More super Schrodinger algebras from psu(2,2|4). J. High Energy Phys. 2008.
[18]  Maldacena, J.M.; Martelli, D.; Tachikawa, Y. Comments on string theory backgrounds with non-relativistic conformal symmetry. J. High Energy Phys. , 2008.
[19]  Hartnoll, S.A.; Yoshida, K. Families of IIB duals for nonrelativistic CFTs. J. High Energy Phys. 2008.
[20]  Donos, A.; Gauntlett, J.P. Supersymmetric solutions for non-relativistic holography. J. High Energy Phys. 2009.
[21]  Donos, A.; Gauntlett, J.P. Solutions of type IIB and D=11 supergravity with Schrodinger(z) symmetry. J. High Energy Phys. 2009.
[22]  Ooguri, H.; Park, C.-S. Supersymmetric non-relativistic geometries in M-theory. Nucl. Phys. B 2010, 824, 136–153, doi:10.1016/j.nuclphysb.2009.08.021.
[23]  Donos, A.; Gauntlett, J.P. Schrodinger invariant solutions of type IIB with enhanced supersymmetry. J. High Energy Phys. 2009.
[24]  Bobev, N.; Kundu, A. Deformations of Holographic Duals to Non-Relativistic CFTs. J. High Energy Phys. 2009.
[25]  Bobev, N.; Kundu, A.; Pilch, K. Supersymmetric IIB Solutions with Schrodinger Symmetry. J. High Energy Phys. 2009.
[26]  Liu, H.-S.; Lu, H. Supersymmetry of the Schrodinger and PP wave solutions in Einstein-Weyl supergravities. 2012. arXiv:1206.4371.
[27]  Balasubramanian, K.; Narayan, K. Lifshitz spacetimes from AdS null and cosmological solutions. J. High Energy Phys. 2010. arXiv:1005.3291v3.
[28]  Donos, A.; Gauntlett, J.P. Lifshitz Solutions of D = 10 and D = 11 supergravity. J. High Energy Phys. 2010.
[29]  Gregory, R.; Parameswaran, S.L.; Tasinato, G.; Zavala, I. Lifshitz solutions in supergravity and string theory. J. High Energy Phys. 2010.
[30]  Cassani, D.; Faedo, A.F. Constructing Lifshitz solutions from AdS. J. High Energy Phys. 2011.
[31]  Halmagyi, N.; Petrini, M.; Zaffaroni, A. Non-Relativistic Solutions of N = 2 Gauged Supergravity. J. High Energy Phys. 2011.
[32]  Narayan, K. Lifshitz-like systems and AdS null deformations. Phys. Rev. D 2011, 84, 086001:1–086001:10.
[33]  Chemissany, W.; Hartong, J. From D3-Branes to Lifshitz Space-Times. Class. Quant. Grav. 2011, 28, 195011:1–195011:13.
[34]  Beisert, N. The dilatation operator of N = 4 super Yang-Mills theory and integrability. Phys. Rept., 2005, 405, 1–202.
[35]  The triality of SO(8) and hence of SO*(8) makes this possible. Concretely, we take
[36]  Claus, P.; Kallosh, R.; Van Proeyen, A. M 5-brane and superconformal (0,2) tensor multiplet in 6 dimensions. Nucl. Phys. B 1998, 518, 117–150.
[37]  A chiral spinor of SO(2,6) is decomposed into under

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413