全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats

DOI: 10.1186/2045-8118-9-19

Keywords: Hydrocephalus, Cognition, Neurobehavioural tests, Neuropathology, Cell death, Inflammation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrocephalus was induced in three-week old rats by intracisternal injection of kaolin. Behavioural and motor function were tested four weeks after hydrocephalus induction and correlated to ventricular enlargement which was classified into mild, moderate or severe. Gross brain morphology, routine histology and immunohistochemistry for oligodendrocytes (CNPase), microglia (Iba-1) and astrocytes (GFAP) were performed to assess the cellular changes.Decreases in open field activity and forelimb grip strength in hydrocephalus correlated with the degree of ventriculomegaly. Learning in Morris water maze was significantly impaired in hydrocephalic rats. Gradual stretching of the ependymal layer, thinning of the corpus callosum, extracellular oedema and reduced cortical thickness were observed as the degree of ventriculomegaly increased. A gradual loss of oligodendrocytes in the corpus callosum and cerebral cortex was most marked in the severely-hydrocephalic brains, whereas the widespread astrogliosis especially in the subependymal layer was most marked in the brains with mild hydrocephalus. Retraction of microglial processes and increase in Iba-1 immunoreactivity in the white matter was associated ventriculomegaly.In hydrocephalic rats, oligodendrocyte loss, microglia activation, astrogliosis in cortical areas and thinning of the corpus callosum were associated with ventriculomegaly. The degree of ventriculomegaly correlated with motor and cognitive deficits.Hydrocephalus is a relatively common neurological condition especially in children, occurring in 0.5 – 1 per 1,000 live births worldwide [1]. It is most usually characterized by an anomaly in the circulation of cerebrospinal fluid leading to its accumulation within the ventricles of the brain. The motor and cognitive deficits which occur in hydrocephalus are thought to be partly due to axonal damage within the periventricular white matter. In addition, myelin disruption is prominent in hydrocephalus [2], accounting fo

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133