|
Frontiers in Zoology 2013
Dynamics of symbiont-mediated antibiotic production reveal efficient long-term protection for beewolf offspringAbstract: Here we show that the production of antimicrobial compounds by the beewolf symbionts is confined to the first two weeks after cocoon spinning, leading to a high concentration of piericidins and streptochlorin on the cocoon surface. Expression profiling of housekeeping, sporulation, and antibiotic biosynthesis genes indicates that antibiotic production coincides with morphological differentiation that enables the symbionts to survive the nutrient-limited conditions on the beewolf cocoon. The antibiotic substances remain stable on the cocoon surface for the entire duration of the beewolf's hibernation period, demonstrating that the compounds are resistant against environmental influences.The antibiotic production by the beewolf symbionts serves as a reliable protection for the wasp offspring against pathogenic microorganisms during the long and unpredictable developmental phase in the subterranean brood cells. Thus, the beewolf-Streptomyces symbiosis provides one of the rare examples of antibiotics serving as an efficient defense in the natural environment and may aid in devising new strategies for the utilization of antibiotic combination therapies in human medicine against increasingly resistant bacterial and fungal pathogens.
|