|
Clinical Epigenetics 2013
The interaction of genetic variants and DNA methylation of the interleukin-4 receptor gene increase the risk of asthma at age 18 yearsKeywords: Interleukin-4 receptor gene, DNA methylation, Genetic variants, Asthma, Epigenetics Abstract: Thirteen single nucleotide polymorphisms (SNPs) and twelve CpG sites of IL4R gene were analyzed. Based on linkage disequilibrium and association with asthma, eight SNPs and one CpG site were selected for further analyses. Of the twelve CpG sites in the IL4R gene, only methylation levels of cg09791102 showed an association with asthma at age 18 years (Wilcoxon test: P = 0.01). Log-linear models were used to estimate risk ratios (RRs) for asthma adjusting for uncorrelated SNPs within the IL4R gene and covariates. Testing for interaction between the eight SNPs and the methylation levels of cg09791102 on the risk for asthma at age 18 years, we identified the statistically significant interaction term of SNP rs3024685 × methylation levels of cg09791102 (P = 0.002; after adjusting for false discovery rate). A total of 84 participants had methylation levels ≤0.88, 112 participants between 0.89 and 0.90, and 35 between 0.91 and 0.92. For the SNP rs3024685 (‘CC’ vs. ‘TT’) at methylation levels of ≤0.85, 0.86, 0.90, 0.91, and 0.92, the RRs were 0.01, 0.04, 4.65, 14.76, 14.90, respectively (interaction effect, P = 0.0003).Adjusting for multiple testing, our results suggest that DNA-M modulates the risk of asthma related to genetic variants in the IL4R gene. The strong interaction of one SNP and DNA-M is encouraging and provides a novel model of how a joint effect of genetic variants and DNA-M can explain occurrence of asthma.Asthma is a common chronic disease that affects around 235 million people around the world and 5.4 million in the United Kingdom (UK) [1]. The burden of disease affects 1.1 million children between ages 0 to 17 years in the UK. Asthma is characterized clinically by shortness of breath, wheezing episodes, chest tightness, and acute episodes of coughing [2]. The disease etiology is poorly understood and the postnatal development is not well established. Genetic susceptibility, environmental factors, and gene × environment interaction are believed to play a c
|