全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Partial Least Squares based algorithm for parsimonious variable selection

DOI: 10.1186/1748-7188-6-27

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an algorithm balancing the parsimony and the predictive performance of a model. The algorithm is based on variable selection using reduced-rank Partial Least Squares with a regularized elimination. Allowing a marginal decrease in model performance results in a substantial decrease in the number of selected variables. This significantly improves the understandability of the model. Within the approach we have tested and compared three different criteria commonly used in the Partial Least Square modeling paradigm for variable selection; loading weights, regression coefficients and variable importance on projections. The algorithm is applied to a problem of identifying codon variations discriminating different bacterial taxa, which is of particular interest in classifying metagenomics samples. The results are compared with a classical forward selection algorithm, the much used Lasso algorithm as well as Soft-threshold Partial Least Squares variable selection.A regularized elimination algorithm based on Partial Least Squares produces results that increase understandability and consistency and reduces the classification error on test data compared to standard approaches.With the tremendous increase in data collection techniques in modern biology, it has become possible to sample observations on a huge number of genetic, phenotypic and ecological variables simultaneously. It is now much easier to generate immense sets of raw data than to establish relations and provide their biological interpretation [1-3]. Considering cases of supervised statistical learning, huge sets of measured/collected variables are typically used as explanatory variables, all with a potential impact on some response variable, e.g. a phenotype or class label. In many situations we have to deal with data sets having a large number of variables p in comparison to the number of samples n. In such 'large p small n' situations selection of a smaller number of influencing variables is important

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133