全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Glibenclamide inhibits cell growth by inducing G0/G1 arrest in the human breast cancer cell line MDA-MB-231

DOI: 10.1186/2050-6511-14-6

Keywords: Glibenclamide, Potassium channels, MDA-MB-231, Cytostatic effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mRNA expression of the different subunits that compose the KATP channels was evaluated in MDA-MB-231 cells by reverse transcriptase-polymerase chain reaction. Results showed the expression of mRNA for both pore-forming isoforms Kir6.1 and Kir6.2 and for the regulatory isoform SUR2B in this cell line. Gli inhibited cell proliferation assessed by a clonogenic method in a dose dependent manner, with an increment in the population doubling time. The KATP channel opener minoxidil increased clonogenic proliferation, effect that was counteracted by Gli. When cell cycle analysis was performed by flow cytometry, Gli induced a significant cell-cycle arrest in G0/G1 phase, together with an up-regulation of p27 levels and a diminution in cyclin E expression, both evaluated by immunoblot. However, neither differentiation evaluated by neutral lipid accumulation nor apoptosis assessed by different methodologies were detected. The cytostatic, non toxic effect on cell proliferation was confirmed by removal of the drug.Combination treatment of Gli with tamoxifen or doxorubicin showed an increment in the antiproliferative effect only for doxorubicin.Our data clearly demonstrated a cytostatic effect of Gli in MDA-MB-231 cells that may be mediated through KATP channels, associated to the inhibition of the G1-S phase progression. In addition, an interesting observation about the effect of the combination of Gli with doxorubicin leads to future research for a potential novel role for Gli as an adjuvant in breast cancer treatmentSulphonylureas are used to increase insulin secretion in patient with type 2-diabetes due to their direct action on pancreatic β cells. These drugs bind to the β cell sulphonylurea receptor (SUR) that is a regulatory subunit of ATP-sensitive potassium channels (KATP channels) [1-3]. KATP channels regulate the transport of potassium ions through cell membranes. A diverse group of compounds can bind to KATP channels causing them to open or close. The opening of p

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133