The protein electrophoresis revolution, nearly fifty years ago, provided the first glimpse into the nature of molecular genetic variation within and between species and showed that the amount of genetic differences between newly arisen species was minimal. Twenty years later, 2D electrophoresis showed that, in contrast to general gene-enzyme variation, reproductive tract proteins were less polymorphic within species but highly diverged between species. The 2D results were interesting and revolutionary, but somewhat uninterpretable because, at the time, rapid evolution and selective sweeps were not yet part of the common vocabulary of evolutionary biologists. Since then, genomic studies of sex and reproduction-related (SRR) genes have grown rapidly into a large area of research in evolutionary biology and are shedding light on a number of phenomena. Here we review some of the major and current fields of research that have greatly contributed to our understanding of the evolutionary dynamics and importance of SRR genes and genetic systems in understanding reproductive biology and speciation. 1. Introduction Science aims to provide simple and general explanations for natural phenomena, and all sciences must deal with the problem of heterogeneity. Variation and heterogeneity are the hallmarks of biological diversity and capture the attention of anyone interested in trying to unravel the mysteries of the biological world. Explaining biological diversity was indeed the problem for which Darwin provided a simple but revolutionary solution [1]. Variation and adaptation are the first two words that come to mind in relation to living organisms, and it was Darwin’s genius that in using these two observations he was able to formulate the theory of natural selection to explain the diversity that we see reflected in the millions of different kinds of organisms or species on this planet. Given its spectacular success in providing a causal explanation for organismic change (evolution within lineages), it is equally remarkable that Darwin was unable to provide a causal mechanism of speciation (evolution between lineages). Such a causal theory had to wait nearly a century after the publication of Darwin’s Origin of Species [1] and it materialized only after the evolutionary synthesis of the 1940s after population genetics had developed a theoretical framework [2, 3]. 2. Speciation Genetics: Mendelian versus Molecular Approach Diversity is a problem in biology in two ways: the most obvious of which is that diversity needs to be explained; the other is that it can thwart
References
[1]
C. Darwin, The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray, London, UK, 1859.
[2]
T. Dobzhansky, Genetics and the Origin of Species, Columbia University Press, New York, NY, USA, 1937.
[3]
E. Mayr, Animal Species and Evolution, Harvard University Press, Cambridge, Mass, USA, 1963.
[4]
R. Levins, Evolution in Changing Environments, Princeton University Press, Princeton, NJ, USA, 1968.
[5]
H. J. Muller, “Bearing of the Drosophila work on systematics,” in The New Systematics, J. Huxley, Ed., pp. 185–268, Clarendon Press, Oxford, UK, 1940.
[6]
R. C. Lewontin, The Genetic Basis of Evolutionary Change, Columbia University Press, New York, UK, 1974.
[7]
J. A. Coyne and H. A. Orr, Speciation, Sinauer Associates, Sunderland, UK, 2005.
[8]
M. B. Coulthart and R. S. Singh, “Differing amounts of genetic polymorphism in testes and male accessory glands of Drosophila melanogaster and Drosophila simulans,” Biochemical Genetics, vol. 26, no. 1-2, pp. 153–164, 1988.
[9]
M. B. Coulthart and R. S. Singh, “High level of divergence of male-reproductive-tract proteins, between Drosophila melanogaster and its sibling species, D. simulans,” Molecular Biology and Evolution, vol. 5, no. 2, pp. 182–191, 1988.
[10]
M. B. Coulthart and R. S. Singh, “Low genic variation in male-reproductive-tract proteins of Drosophila melanogaster and D. simulans,” Molecular Biology and Evolution, vol. 5, no. 2, pp. 167–181, 1988.
[11]
E. Nevo, A. Beiles, and R. Ben-Shlomo, “The evolutionary significance of genetic diversity: ecological, demographical and life history correlates,” Lecture Notes in Biomathematics, vol. 53, pp. 13–213, 1984.
[12]
S. Thomas and R. S. Singh, “A comprehensive study of genic variation in natural populations of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis,” Molecular Biology and Evolution, vol. 9, no. 3, pp. 507–525, 1992.
[13]
A. Civetta and R. S. Singh, “High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species,” Journal of Molecular Evolution, vol. 41, no. 6, pp. 1085–1095, 1995.
[14]
A. Civetta and R. S. Singh, “Sex-related genes, directional sexual selection, and speciation,” Molecular Biology and Evolution, vol. 15, no. 7, pp. 901–909, 1998.
[15]
L. W. Zeng and R. S. Singh, “A combined classical genetic and high resolution two-dimensional electrophoretic approach to the assessment of the number of genes affecting hybrid male sterility in Drosophila simulans and Drosophila sechellia,” Genetics, vol. 135, no. 1, pp. 135–147, 1993.
[16]
L. W. Zeng and R. S. Singh, “The genetic basis of Haldane's rule and the nature of asymmetric hybrid male sterility among Drosophila simulans, Drosophila mauritiana and Drosophila sechellia,” Genetics, vol. 134, no. 1, pp. 251–260, 1993.
[17]
S. Jagadeeshan, W. Haerty, and R. S. Singh, “Is speciation accompanied by rapid evolution? Insights from comparing reproductive and nonreproductive transcriptomes in Drosophila,” International Journal of Evolutionary Biology, vol. 2011, Article ID 595121, 11 pages, 2011.
[18]
R. S. Singh, “Toward a unified theory of speciation,” in Evolutionary Genetics: From Molecules to Morphology, R. S. Singh and C. B. Krimbas, Eds., pp. 570–604, Cambridge University Press, London, UK, 2000.
[19]
R. S. Singh and R. J. Kulathinal, “Sex gene pool evolution and speciation: a new paradigm,” Genes and Genetic Systems, vol. 75, no. 3, pp. 119–130, 2000.
[20]
R. S. Singh, J. Xu, and R. J. Kulathinal, Rapidly Evolving Genes and Genetic Systems, Oxford University Press, Oxford, UK, 2012.
[21]
A. L. Hughes, “Rapid evolution of immunoglobulin superfamily C2 domains expressed in immune system cells,” Molecular Biology and Evolution, vol. 14, no. 1, pp. 1–5, 1997.
[22]
S. Paterson, T. Vogwill, A. Buckling et al., “Antagonistic coevolution accelerates molecular evolution,” Nature, vol. 464, no. 7286, pp. 275–278, 2010.
[23]
R. J. Kulathinal, L. Skwarek, R. A. Morton, and R. S. Singh, “Rapid evolution of the sex-determining gene, transformer: structural diversity and rate heterogeneity among sibling species of Drosophila,” Molecular Biology and Evolution, vol. 20, no. 3, pp. 441–452, 2003.
[24]
W. J. Swanson, A. G. Clark, H. M. Waldrip-Dail, M. F. Wolfner, and C. F. Aquadro, “Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7375–7379, 2001.
[25]
W. J. Swanson, A. Wong, M. F. Wolfner, and C. F. Aquadro, “Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection,” Genetics, vol. 168, no. 3, pp. 1457–1465, 2004.
[26]
S. Jagadeeshan and R. S. Singh, “Rapidly evolving genes of Drosophila: differing levels of selective pressure in testis, ovary, and head tissues between sibling species,” Molecular Biology and Evolution, vol. 22, no. 9, pp. 1793–1801, 2005.
[27]
W. Haerty and R. S. Singh, “Gene regulation divergence is a major contributor to the evolution of Dobzhansky-Muller incompatibilities between species of Drosophila,” Molecular Biology and Evolution, vol. 23, no. 9, pp. 1707–1714, 2006.
[28]
C. G. Artieri and R. S. Singh, “Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila,” BMC Biology, vol. 8, article 26, 2010.
[29]
D. G. Torgerson, R. J. Kulathinal, and R. S. Singh, “Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes,” Molecular Biology and Evolution, vol. 19, no. 11, pp. 1973–1980, 2002.
[30]
D. G. Torgerson and R. S. Singh, “Sex-linked mammalian sperm proteins evolve faster than autosomal ones,” Molecular Biology and Evolution, vol. 20, no. 10, pp. 1705–1709, 2003.
[31]
D. G. Torgerson and R. S. Singh, “Rapid evolution through gene duplication and subfunctionalization of the testes-specific α4 proteasome subunits in Drosophila,” Genetics, vol. 168, no. 3, pp. 1421–1432, 2004.
[32]
D. G. Torgerson and R. S. Singh, “Enhanced adaptive evolution of sperm-expressed genes on the mammalian X chromosome,” Heredity, vol. 96, no. 1, pp. 39–44, 2006.
[33]
K. Ravi Ram, S. Ji, and M. F. Wolfner, “Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster,” Insect Biochemistry and Molecular Biology, vol. 35, no. 9, pp. 1059–1071, 2005.
[34]
M. F. Wolfner, “‘S.P.E.R.M.’ (seminal proteins (are) essential reproductive modulators): the view from Drosophila,” Society of Reproduction and Fertility supplement, vol. 65, supplement, pp. 183–199, 2007.
[35]
M. F. Wolfner, H. A. Harada, M. J. Bertram et al., “New genes for male accessory gland proteins in Drosophila melanogaster,” Insect Biochemistry and Molecular Biology, vol. 27, no. 10, pp. 825–834, 1997.
[36]
K. R. Ram and M. F. Wolfner, “Sustained post-mating response in Drosophila melanogaster requires multiple seminal fluid proteins,” PLoS Genetics, vol. 3, no. 12, article e238, 2007.
[37]
K. Ravi Ram and M. F. Wolfner, “A network of interactions among seminal proteins underlies the long-term postmating response in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 36, pp. 15384–15389, 2009.
[38]
D. C. Presgraves, “The molecular evolutionary basis of species formation,” Nature Reviews Genetics, vol. 11, no. 3, pp. 175–180, 2010.
[39]
H. A. Orr, “The genetic basis of reproductive isolation: insights from Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, supplement 1, pp. 6522–6526, 2005.
[40]
H. A. Orr, J. P. Masly, and D. C. Presgraves, “Speciation genes,” Current Opinion in Genetics and Development, vol. 14, no. 6, pp. 675–679, 2004.
[41]
C. I. Wu and C. T. Ting, “Genes and speciation,” Nature Reviews Genetics, vol. 5, no. 2, pp. 114–122, 2004.
[42]
W. Haerty, S. Jagadeeshan, R. J. Kulathinal et al., “Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila,” Genetics, vol. 177, no. 3, pp. 1321–1335, 2007.
[43]
M. Long and C. H. Langley, “Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila,” Science, vol. 259, no. 5104, pp. 91–95, 1993.
[44]
D. I. Nurminsky, M. V. Nurminskaya, D. De Aguiar, and D. L. Hartl, “Selective sweep of a newly evolved sperm-specific gene in Drosophila,” Nature, vol. 396, no. 6711, pp. 572–575, 1998.
[45]
M. Long, “Evolution of novel genes,” Current Opinion in Genetics and Development, vol. 11, no. 6, pp. 673–680, 2001.
[46]
M. Long, E. Betrán, K. Thornton, and W. Wang, “The origin of new genes: glimpses from the young and old,” Nature Reviews Genetics, vol. 4, no. 11, pp. 865–875, 2003.
[47]
M. Long, M. Deutsch, W. Wang, E. Betrán, F. G. Brunet, and J. Zhang, “Origin of new genes: evidence from experimental and computational analyses,” Genetica, vol. 118, no. 2-3, pp. 171–182, 2003.
[48]
W. Wang, J. Zhang, C. Alvarez, A. Llopart, and M. Long, “The origin of the jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster,” Molecular Biology and Evolution, vol. 17, no. 9, pp. 1294–1301, 2000.
[49]
M. T. Levine, C. D. Jones, A. D. Kern, H. A. Lindfors, and D. J. Begun, “Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9935–9939, 2006.
[50]
S. Sun, C. T. Ting, and C. I. Wu, “The normal function of a speciation gene, Odysseus, and its hybrid sterility effect,” Science, vol. 305, no. 5680, pp. 81–83, 2004.
[51]
S. Sun, Functional Analysis of hte Hybrid Male Sterility Gene Odysseus in Drosophila, University of Chicago Press, Chicago, Ill, USA, 2003.
[52]
B. Loppin, D. Lepetit, S. Dorus, P. Couble, and T. L. Karr, “Origin and neofunctionalization of a Drosophila paternal effect gene essential for zygote viability,” Current Biology, vol. 15, no. 2, pp. 87–93, 2005.
[53]
F. W. Avila, L. K. Sirot, B. A. Laflamme, C. D. Rubinstein, and M. F. Wolfner, “Insect seminal fluid proteins: identification and function,” Annual Review of Entomology, vol. 56, pp. 21–40, 2011.
[54]
L. K. Sirot, B. A. LaFlamme, J. L. Sitnik et al., “Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study,” Advances in genetics, vol. 68, pp. 23–56, 2009.
[55]
L. A. McGraw, G. Gibson, A. G. Clark, and M. F. Wolfner, “Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster,” Current Biology, vol. 14, no. 16, pp. 1509–1514, 2004.
[56]
M. F. Wolfner, “The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila,” Heredity, vol. 88, no. 2, pp. 85–93, 2002.
[57]
J. J. Emerson, H. Kaessmann, E. Betrán, and M. Long, “Extensive gene traffic on the mammalian X chromosome,” Science, vol. 303, no. 5657, pp. 537–540, 2004.
[58]
E. Betrán, K. Thornton, and M. Long, “Retroposed new genes out of the X in Drosophila,” Genome Research, vol. 12, no. 12, pp. 1854–1859, 2002.
[59]
R. P. Meisel, B. B. Hilldorfer, J. L. Koch, S. Lockton, and S. W. Schaeffer, “Adaptive evolution of genes duplicated from the Drosophila pseudoobscura neo-X chromosome,” Molecular Biology and Evolution, vol. 27, no. 8, pp. 1963–1978, 2010.
[60]
R. P. Meisel, J. H. Malone, and A. G. Clark, “Disentangling the relationship between sex-biased gene expression and X-linkage,” Genome Research, vol. 22, no. 7, pp. 1255–1265, 2012.
[61]
M. Cardoso-Moreira and M. Long, “The origin and evolution of new genes,” Methods in Molecular Biology, vol. 856, part 2, pp. 161–186, 2012.
[62]
R. S. Singh and C. G. Artieri, “Male sex drive and the maintenance of sex: evidence from Drosophila,” Journal of Heredity, vol. 101, supplement 1, pp. S100–S106, 2010.
[63]
R. S. Singh and R. J. Kulathinal, “Male sex drive and the masculinization of the genome,” BioEssays, vol. 27, no. 5, pp. 518–525, 2005.
[64]
A. Civetta and R. S. Singh, “Broad-sense sexual selection, sex gene pool evolution, and speciation,” Genome, vol. 42, no. 6, pp. 1033–1041, 1999.
[65]
B. R. Graveley, A. N. Brooks, J. W. Carlson et al., “The developmental transcriptome of Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 473–479, 2011.
[66]
J. M. Ranz, C. I. Castillo-Davis, C. D. Meiklejohn, and D. L. Hartl, “Sex-dependent gene expression and evolution of the Drosophila transcriptome,” Science, vol. 300, no. 5626, pp. 1742–1745, 2003.
[67]
H. Ellegren and J. Parsch, “The evolution of sex-biased genes and sex-biased gene expression,” Nature Reviews Genetics, vol. 8, no. 9, pp. 689–698, 2007.
[68]
X. Yang, E. E. Schadt, S. Wang et al., “Tissue-specific expression and regulation of sexually dimorphic genes in mice,” Genome Research, vol. 16, no. 8, pp. 995–1004, 2006.
[69]
M. J. Parisi, V. Gupta, D. Sturgill et al., “Germline-dependent gene expression in distant non-gonadal somatic tissues of Drosophila,” BMC Genomics, vol. 11, no. 1, article 346, 2010.
[70]
Y. Zhang, D. Sturgill, M. Parisi, S. Kumar, and B. Oliver, “Constraint and turnover in sex-biased gene expression in the genus Drosophila,” Nature, vol. 450, no. 7167, pp. 233–237, 2007.
[71]
M. Parisi, R. Nuttall, D. Naiman et al., “A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults,” Genome biology, vol. 5, no. 6, p. R40, 2004.
[72]
M. Parisi, R. Nuttall, D. Naiman et al., “Paucity of genes on the Drosophila X chromosome showing male-biased expression,” Science, vol. 299, no. 5607, pp. 697–700, 2003.
[73]
W. R. Rice, “Sex chromosomes and the evolution of sexual dimorphism,” Evolution, vol. 38, no. 4, pp. 735–742, 1984.
[74]
M. D. Vibranovski, H. F. Lopes, T. L. Karr, and M. Long, “Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes,” PLoS Genetics, vol. 5, no. 11, Article ID e1000731, 2009.
[75]
E. Lifschytz and D. L. Lindsley, “The role of X-chromosome inactivation during spermatogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 1, pp. 182–186, 1972.
[76]
C. D. Meiklejohn, E. L. Landeen, J. M. Cook, S. B. Kingan, and D. C. Presgraves, “Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation,” PLoS Biology, vol. 9, no. 8, Article ID e1001126, 2011.
[77]
L. M. Mikhaylova and D. I. Nurminsky, “Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome,” BMC Biology, vol. 9, article 29, 2011.
[78]
L. M. Mikhaylova and D. I. Nurminsky, “No severe and global X chromosome inactivation in meiotic male germline of Drosophila,” BMC Biology, vol. 10, article 50, 2012.
[79]
M. D. Vibranovski, Y. E. Zhang, C. Kemkemer, H. F. Lopes, T. L. Karr, and M. Long, “Re-analysis of the larval testis data on meiotic sex chromosome inactivation revealed evidence for tissue-specific gene expression related to the Drosophila X chromosome,” BMC Biology, vol. 10, article 49, 2012.
[80]
Z. Zhang, T. M. Hambuch, and J. Parsch, “Molecular evolution of sex-biased genes in Drosophila,” Molecular Biology and Evolution, vol. 21, no. 11, pp. 2130–2139, 2004.
[81]
M. Pr?schel, Z. Zhang, and J. Parsch, “Widespread adaptive evolution of Drosophila genes with sex-biased expression,” Genetics, vol. 174, no. 2, pp. 893–900, 2006.
[82]
J. B. S. Haldane, “Sex ratio and unisexual sterility in hybrid animals,” Journal of Genetics, vol. 12, no. 2, pp. 101–109, 1922.
[83]
H. A. Lessios, “Speciation genes in free-spawning marine invertebrates,” Integrative and Comparative Biology, vol. 51, no. 3, pp. 456–465, 2011.
[84]
H. A. Lessios, “Reproductive isolation between species of sea urchins,” Bulletin of Marine Science, vol. 81, no. 2, pp. 191–208, 2007.
[85]
A. Vieira and D. J. Miller, “Gamete interaction: is it species-specific?” Molecular Reproduction and Development, vol. 73, no. 11, pp. 1422–1429, 2006.
[86]
A. T. Neill and V. D. Vacquier, “Ligands and receptors mediating signal transduction in sea urchin spermatozoa,” Reproduction, vol. 127, no. 2, pp. 141–149, 2004.
[87]
V. D. Vacquier, “Evolution of gamete recognition proteins,” Science, vol. 281, no. 5385, pp. 1995–1998, 1998.
[88]
W. J. Swanson and V. D. Vacquier, “The rapid evolution of reproductive proteins,” Nature Reviews Genetics, vol. 3, no. 2, pp. 137–144, 2002.
[89]
W. J. Swanson and V. D. Vacquier, “Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein,” Science, vol. 281, no. 5377, pp. 710–712, 1998.
[90]
N. L. Clark, J. Gasper, M. Sekino, S. A. Springer, C. F. Aquadro, and W. J. Swanson, “Coevolution of interacting fertilization proteins,” PLoS Genetics, vol. 5, no. 7, Article ID e1000570, 2009.
[91]
E. C. Metz and S. R. Palumbi, “Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin,” Molecular Biology and Evolution, vol. 13, no. 2, pp. 397–406, 1996.
[92]
K. S. Zigler, M. A. McCartney, D. R. Levitan, and H. A. Lessios, “Sea urchin bindin divergence predicts gamete compatibility,” Evolution, vol. 59, no. 11, pp. 2399–2404, 2005.
[93]
E. Brunner, C. H. Ahrens, S. Mohanty et al., “A high-quality catalog of the Drosophila melanogaster proteome,” Nature Biotechnology, vol. 25, no. 5, pp. 576–583, 2007.
[94]
S. Dorus, S. A. Busby, U. Gerike, J. Shabanowitz, D. F. Hunt, and T. L. Karr, “Genomic and functional evolution of the Drosophila melanogaster sperm proteome,” Nature Genetics, vol. 38, no. 12, pp. 1440–1445, 2006.
[95]
E. R. Wasbrough, S. Dorus, S. Hester et al., “The Drosophila melanogaster sperm proteome-II (DmSP-II),” Journal of Proteomics, vol. 73, no. 11, pp. 2171–2185, 2010.
[96]
C. D. Jiggins, C. Salazar, M. Linares, and J. Mavarez, “Review. Hybrid trait speciation and Heliconius butterflies,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1506, pp. 3047–3054, 2008.
[97]
R. E. Naisbit, C. D. Jiggins, M. Linares, C. Salazar, and J. Mallet, “Hybrid sterility, Haldane's rule and speciation in Heliconius cydno and H. melpomene,” Genetics, vol. 161, no. 4, pp. 1517–1526, 2002.
[98]
D. A. Barbash, D. F. Siino, A. M. Tarone, and J. Roote, “A rapidly evolving MYB-related protein causes species isolation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5302–5307, 2003.
[99]
J. P. Masly, C. D. Jones, M. A. F. Noor, J. Locke, and H. A. Orr, “Gene transposition as a cause of hybrid sterility in Drosophila,” Science, vol. 313, no. 5792, pp. 1448–1450, 2006.
[100]
N. Phadnis and H. A. Orr, “A single gene causes both male sterility and segregation distortion in Drosophila hybrids,” Science, vol. 323, no. 5912, pp. 376–379, 2009.
[101]
D. C. Presgraves, L. Balagopalan, S. M. Abmayr, and H. A. Orr, “Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila,” Nature, vol. 423, no. 6941, pp. 715–719, 2003.
[102]
C. T. Ting, S. C. Tsaur, M. L. Wu, and C. I. Wu, “A rapidly evolving homeobox at the site of a hybrid sterility gene,” Science, vol. 282, no. 5393, pp. 1501–1504, 1998.
[103]
J. J. Bayes and H. S. Malik, “Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species,” Science, vol. 326, no. 5959, pp. 1538–1541, 2009.
[104]
D. A. Barbash, P. Awadalla, and A. M. Tarone, “Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus,” PLoS Biology, vol. 2, no. 6, pp. 839–848, 2004.
[105]
S. Tang and D. C. Presgraves, “Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities,” Science, vol. 323, no. 5915, pp. 779–782, 2009.
[106]
H. A. Orr and M. Turelli, “The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities,” Evolution, vol. 55, no. 6, pp. 1085–1094, 2001.
[107]
C. G. Artieri, W. Haerty, and R. S. Singh, “Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila,” BMC Biology, vol. 7, article 42, 2009.
[108]
H. A. Orr and D. C. Presgraves, “Speciation by postzygotic isolation: forces, genes and molecules,” Bioessays, vol. 22, no. 12, pp. 1085–1094, 2000.
[109]
K. E. Von Baer, Entwicklungsgeschichte der Tiere: Beobachtung und Relexion, Borntrager, Konigsberg, Germany, 1828.
[110]
D. A. Garfield and G. A. Wray, “Comparative embryology without a microscope: using genomic approaches to understand the evolution of development,” Journal of Biology, vol. 8, no. 7, article 65, 2009.
[111]
C. I. Castillo-Davis and D. L. Hartl, “Genome evolution and developmental constraint in Caenorhabditis elegans,” Molecular Biology and Evolution, vol. 19, no. 5, pp. 728–735, 2002.
[112]
J. Roux and M. Robinson-Rechavi, “Developmental constraints on vertebrate genome evolution,” PLoS Genetics, vol. 4, no. 12, Article ID e1000311, 2008.
[113]
J. C. Davis, O. Brandman, and D. A. Petrov, “Protein evolution in the context of Drosophila development,” Journal of Molecular Evolution, vol. 60, no. 6, pp. 774–785, 2005.
[114]
G. A. Parker, “Sexual selection and sexual conflict,” in Sexual Selection and Reproductive Competition in Insects, M. S. Blum and N. A. Blum, Eds., pp. 123–166, Academy Press, London, 1979.
[115]
G. Arnqvist and L. Rowe, Sexual Conflict, Princeton University Press, Princeton, NJ, USA, 2005.
[116]
G. A. Parker, “Sexual conflict over mating and fertilization: an overview,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1466, pp. 235–259, 2006.
[117]
G. A. Parker, “Sexual conflict and speciation,” Philosophical Transactions of the Royal Society B, vol. 353, no. 1366, pp. 261–274, 1998.
[118]
G. Arnqvist, “Sexual conflict and sexual selection: lost in the chase,” Evolution, vol. 58, no. 6, pp. 1383–1388, 2004.
[119]
G. Arnqvist, M. Edvardsson, U. Friberg, and T. Nilsson, “Sexual conflict promotes speciation in insects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 19, pp. 10460–10464, 2000.
[120]
A. Civetta and A. G. Clark, “Correlated effects of sperm competition and postmating female mortality,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13162–13165, 2000.
[121]
W. R. Rice, “Sexually antagonistic male adaptation triggered by experimental arrest of female evolution,” Nature, vol. 381, no. 6579, pp. 232–234, 1996.
[122]
W. R. Rice, J. E. Linder, U. Friberg, T. A. Lew, E. H. Morrow, and A. D. Stewart, “Inter-locus antagonistic coevolution as an engine of speciation: assessment with hemiclonal analysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, supplement 1, pp. 6527–6534, 2005.
[123]
L. Rowe, G. Arnqvist, A. Sih, and J. J. Krupa, “Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system,” Trends in Ecology and Evolution, vol. 9, no. 8, pp. 289–293, 1994.