全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms

DOI: 10.1186/1471-2229-13-23

Full-Text   Cite this paper   Add to My Lib

Abstract:

S limitation does not significantly reduce the total shoot biomass but inhibits growth and photosynthesis of young leaves. This photosynthesis decline is not due to a decrease in chlorophyll content, which remains similar to Control. The increase in anthocyanins and H2O2 content in young leaves of S-limited plants suggests that S restriction leads to an oxidative stress. Proteomic analysis at 35 d of S limitation also revealed the induction of 12-oxophitodienoate reductase and ACC synthase, respectively involved in jasmonate and ethylene biosynthesis, two phytohormones that could be implicated in oxidative stress. Proteins involved in photosynthesis and carbon metabolism were also modulated by S restriction. In particular, the decrease in plastocyanin and ferredoxin--NADP reductase suggests that H2O2 accumulation is associated with perturbation of the photosynthetic electron transport chain. The accumulation of chloroplastic Cu-Zn SOD reinforces the idea that an oxidative stress probably occurs in the chloroplast. Proteomic results suggest that the maintenance of chlorophyll in S-limited conditions is related to an accumulation of Water Soluble Chlorophyll binding Proteins, involved in the protection of chlorophyll against ROS. The accumulation of the catalytic alpha--subunit of chloroplastic ATP synthase suggests that energy production is maintained.S limitation leads to photosynthesis and carbon metabolism disturbances that could be responsible for the oxidative stress observed in the young leaves of oilseed rape. Despite this, induction of proteins involved in oxidative stress resistance and energy production shows that the leaf capacity to capture and use photosynthetic active radiations for ATP production remains efficient for as long as possible.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413