全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Species-Specific Relationships between Water Transparency and Male Coloration within and between Two Closely Related Lake Victoria Cichlid Species

DOI: 10.1155/2012/161306

Full-Text   Cite this paper   Add to My Lib

Abstract:

Environmental variation in signalling conditions affects animal communication traits, with possible consequences for sexual selection and reproductive isolation. Using spectrophotometry, we studied how male coloration within and between populations of two closely related Lake Victoria cichlid species (Pundamilia pundamilia and P. nyererei) covaries with water transparency. Focusing on coloration patches implicated in sexual selection, we predicted that in clear waters, with broad-spectrum light, (1) colours should become more saturated and (2) shift in hue away from the dominant ambient wavelengths, compared to more turbid waters. We found support for these predictions for the red and yellow coloration of P. nyererei but not the blue coloration of P. pundamilia. This may be explained by the species difference in depth distribution, which generates a steeper gradient in visual conditions for P. nyererei compared to P. pundamilia. Alternatively, the importance of male coloration in intraspecific sexual selection may differ between the species. We also found that anal fin spots, that is, the orange spots on male haplochromine anal fins that presumably mimic eggs, covaried with water transparency in a similar way for both species. This is in contrast to the other body regions studied and suggests that, while indeed functioning as signals, these spots may not play a role in species differentiation. 1. Introduction Heterogeneous signaling conditions exert divergent selection on animal communication traits, leading to the divergence of sexual signals between environments [1–3]. For example, bird song characteristics may covary with the sound transmission properties of the vegetation (e.g., [4]) and fish coloration may covary with underwater light conditions (e.g., [5]). These adaptations could contribute to reproductive isolation between populations and possibly promote speciation [6–9]. In addition, signalling conditions may influence the opportunity for sexual selection, by compromising signal perception or by increasing the costs of mate searching [10–12]. The haplochromine cichlids of East Africa constitute a species-rich assemblage with extensive variation in male coloration. Several lines of evidence suggest that variation in underwater light conditions influences the evolution of these colour patterns. In Lake Victoria, for example, male colours tend to become more distinctive in locations with relatively high water transparency [13, 14] and some colour morphs are completely absent in turbid waters [15]. Haplochromine coloration mediates both

References

[1]  K. Marchetti, “Dark habitats and bright birds illustrate the role of the environment in species divergence,” Nature, vol. 362, no. 6416, pp. 149–152, 1993.
[2]  J. A. Endler, “Signals, signal conditions, and the direction of evolution,” The American Naturalist, vol. 139, pp. S125–S153, 1992.
[3]  A. V. Badyaev and E. S. Leaf, “Habitat associations of song characteristics in Phylloscopus and Hippolais warblers,” Auk, vol. 114, no. 1, pp. 40–46, 1997.
[4]  J. A. Tobias, J. Aben, R. T. Brumfield et al., “Song divergence by sensory drive in amazonian birds,” Evolution, vol. 64, no. 10, pp. 2820–2839, 2010.
[5]  J. R. Morrongiello, N. R. Bond, D. A. Crook, and B. B. M. Wong, “Nuptial coloration varies with ambient light environment in a freshwater fish,” Journal of Evolutionary Biology, vol. 23, no. 12, pp. 2718–2725, 2010.
[6]  H. Slabbekoorn and T. B. Smith, “Bird song, ecology and speciation,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1420, pp. 493–503, 2002.
[7]  S. M. Gray and J. S. McKinnon, “Linking color polymorphism maintenance and speciation,” Trends in Ecology & Evolution, vol. 22, no. 2, pp. 71–79, 2007.
[8]  J. W. Boughman, “How sensory drive can promote speciation,” Trends in Ecology & Evolution, vol. 17, no. 12, pp. 571–577, 2002.
[9]  M. E. Maan and O. Seehausen, “Ecology, sexual selection and speciation,” Ecology Letters, vol. 14, no. 6, pp. 591–602, 2011.
[10]  C. Richardson and T. Lengagne, “Multiple signals and male spacing affect female preference at cocktail parties in treefrogs,” Proceedings of the Royal Society B, vol. 277, no. 1685, pp. 1247–1252, 2010.
[11]  A. G. Jones and N. L. Ratterman, “Mate choice and sexual selection: what have we learned since Darwin?” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 10001–10008, 2009.
[12]  I. van der Sluijs, S. M. Gray, M. C. P. Amorim et al., “Communication in troubled waters: responses of fish communication systems to changing environments,” Evolutionary Ecology, vol. 25, no. 3, pp. 623–640, 2011.
[13]  O. Seehausen, J. J. M. van Alphen, and F. Witte, “Cichlid fish diversity threatened by eutrophication that curbs sexual selection,” Science, vol. 277, no. 5333, pp. 1808–1811, 1997.
[14]  M. E. Maan, O. Seehausen, and J. J. M. van Alphen, “Female mating preferences and male coloration covary with water transparency in a Lake Victoria cichlid fish,” Biological Journal of the Linnean Society, vol. 99, no. 2, pp. 398–406, 2010.
[15]  R. Lande, O. Seehausen, and J. J. M. van Alphen, “Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish,” Genetica, vol. 112-113, pp. 435–443, 2001.
[16]  M. J. Pauers, J. S. McKinnon, and T. J. Ehlinger, “Directional sexual selection on chroma and within-pattern colour contrast in Labeotropheus fuelleborni,” Proceedings of the Royal Society B, vol. 271, no. 6, pp. S444–S447, 2004.
[17]  M. E. Maan, O. Seehausen, L. S?derberg et al., “Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei,” Proceedings of the Royal Society B, vol. 271, no. 1556, pp. 2445–2452, 2004.
[18]  O. Seehausen and J. J. M. van Alphen, “The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex),” Behavioral Ecology and Sociobiology, vol. 42, no. 1, pp. 1–8, 1998.
[19]  M. E. Knight and G. F. Turner, “Laboratory mating trials indicate incipient speciation by sexual selection among populations of the cichlid fish Pseudotropheus zebra from Lake Malawi,” Proceedings of the Royal Society B, vol. 271, no. 1540, pp. 675–680, 2004.
[20]  B. Egger, K. Mattersdorfer, and K. M. Sefc, “Variable discrimination and asymmetric preferences in laboratory tests of reproductive isolation between cichlid colour morphs,” Journal of Evolutionary Biology, vol. 23, no. 2, pp. 433–439, 2010.
[21]  W. Okullo, T. Ssenyonga, B. Hamre et al., “Parameterization of the inherent optical properties of Murchison Bay, Lake Victoria,” Applied Optics, vol. 46, no. 36, pp. 8553–8561, 2007.
[22]  O. Seehausen, Y. Terai, I. S. Magalhaes et al., “Speciation through sensory drive in cichlid fish,” Nature, vol. 455, no. 7213, pp. 620–626, 2008.
[23]  N. Bouton, O. Seehausen, and J. J. M. van Alphen, “Resource partitioning among rock-dwelling haplochromines (Pisces: Cichlidae) from Lake Victoria,” Ecology of Freshwater Fish, vol. 6, no. 4, pp. 225–240, 1997.
[24]  J. A. Endler and A. E. Houde, “Geographic variation in female preferences for male traits in Poecilia reticulata,” Evolution, vol. 49, no. 3, pp. 456–468, 1995.
[25]  M. E. Maan, K. D. Hofker, J. J. M. van Alphen, and O. Seehausen, “Sensory drive in cichlid speciation,” The American Naturalist, vol. 167, pp. 947–954, 2006.
[26]  T. Levring and G. R. Fish, “The penetration of light in some tropical East-African waters,” Oikos, vol. 7, pp. 98–109, 1956.
[27]  B. Egger, Y. Klaefiger, A. Theis, and W. Salzburger, “A sensory bias has triggered the evolution of egg-spots in cichlid fishes,” PLoS One, vol. 6, no. 10, Article ID e25601, 2011.
[28]  W. Salzburger, T. Mack, E. Verheyen, and A. Meyer, “Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes,” BMC Evolutionary Biology, vol. 5, p. 17, 2005.
[29]  T. Goldschmidt, “Egg mimics in haplochromine cichlids (pisces, perciformes) from Lake Victoria,” Ethology, vol. 88, pp. 177–190, 1991.
[30]  E. Hert, “The function of egg-spots in an African mouth-brooding cichlid fish,” Animal Behaviour, vol. 37, no. 5, pp. 726–732, 1989.
[31]  K. L. Carleton, J. W. L. Parry, J. K. Bowmaker, D. M. Hunt, and O. Seehausen, “Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia,” Molecular Ecology, vol. 14, no. 14, pp. 4341–4353, 2005.
[32]  C. M. Hofmann, K. E. O'Quin, N. J. Marshall, T. W. Cronin, O. Seehausen, and K. L. Carleton, “The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity,” PLoS Biology, vol. 7, no. 12, Article ID e1000266, 2009.
[33]  F. W. Munz and W. N. McFarland, “The significance of spectral position in the rhodopsins of tropical marine fishes,” Vision Research, vol. 13, no. 10, pp. 1829–1874, 1973.
[34]  W. N. McFarland and F. W. Munz, “Part II: the photic environment of clear tropical seas during the day,” Vision Research, vol. 15, no. 10, pp. 1063–1070, 1975.
[35]  J. A. Endler, “On the measurement and classification of colour in studies of animal colour patterns,” Biological Journal of the Linnean Society, vol. 41, no. 4, pp. 315–352, 1990.
[36]  A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith, Mixed Effect Models and Extensions in Ecology with R, Springer, 2009.
[37]  K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach, Springer, 2002.
[38]  R Development Core Team, R: A language and environment for statistical computing, 2011.
[39]  M. Plenderleith, C. van Oosterhout, R. L. Robinson, and G. F. Turner, “Female preference for conspecific males based on olfactory cues in a Lake Malawi cichlid fish,” Biology Letters, vol. 1, no. 4, pp. 411–414, 2005.
[40]  M. N. Verzijden and C. Ten Cate, “Early learning influences species assortative mating preferences in Lake Victoria cichlid fish,” Biology Letters, vol. 3, no. 2, pp. 134–136, 2007.
[41]  K. P. Maruska and R. D. Fernald, “Contextual chemosensory urine signaling in an African cichlid fish,” Journal of Experimental Biology, vol. 215, no. 1, pp. 68–74, 2012.
[42]  D. Osorio and A. D. Ham, “Spectral reflectance and directional properties of structural coloration in bird plumage,” Journal of Experimental Biology, vol. 205, no. 14, pp. 2017–2027, 2002.
[43]  W. Wickler, “‘Egg-dummies’ as natural releasers in mouth-breeding cichlids,” Nature, vol. 194, no. 4833, pp. 1092–1093, 1962.
[44]  A. Theis, W. Salzburger, and B. Egger, “The function of anal fin egg-spots in the cichlid fish Astatotilapia burtoni,” PLoS One, vol. 7, no. 1, Article ID e29878, 2012.
[45]  E. Hert, “Female choice based on egg-spots in Pseudotropheus aurora Burgess 1976, a rock-dwelling cichlid of Lake Malawi, Africa,” Journal of Fish Biology, vol. 38, pp. 951–953, 1991.
[46]  V. C. K. Couldridge, “Experimental manipulation of male eggspots demonstrates female preference for one large spot in Pseudotropheus lombardoi,” Journal of Fish Biology, vol. 60, no. 3, pp. 726–730, 2002.
[47]  W. Salzburger, T. Mack, E. Verheyen, and A. Meyer, “Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes,” BMC Evolutionary Biology, vol. 5, 2005.
[48]  T. Goldschmidt and J. de Visser, “On the possible role of egg mimics in speciation,” Acta Biotheoretica, vol. 38, no. 2, pp. 125–134, 1990.
[49]  O. Seehausen, Lake Victoria Rock Cichlids: Taxonomy, Ecology, and Distribution, Verduijn, 1996.
[50]  J. L. Kelley, B. Phillips, G. H. Cummins, and J. Shand, “Changes in the visual environment affect colour signal brightness and shoaling behaviour in a freshwater fish,” Animal Behaviour, vol. 83, no. 3, pp. 783–791, 2012.
[51]  E. Lewandowski and J. Boughman, “Effects of genetics and light environment on colour expression in threespine sticklebacks,” Biological Journal of the Linnean Society, vol. 94, no. 4, pp. 663–673, 2008.
[52]  M. E. Maan, M. van der Spoel, P. Quesada Jimenez, J. J. M. van Alphen, and O. Seehausen, “Fitness correlates of male coloration in a Lake Victoria cichlid fish,” Behavioral Ecology, vol. 17, no. 5, pp. 691–699, 2006.
[53]  R. D. Fernald, “Quantitative behavioural observations of Haplochromis burtoni under semi-natural conditions,” Animal Behaviour, vol. 25, no. 3, pp. 643–653, 1977.
[54]  S. M. Gray, F. L. Hart, M. E. M. Tremblay, T. J. Lisney, and C. W. Hawryshyn, “The effects of handling time, ambient light, and anaesthetic method, on the standardized measurement of fish colouration,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 68, no. 2, pp. 330–342, 2011.
[55]  T. D. Schultz, C. N. Anderson, and L. B. Symes, “The conspicuousness of colour cues in male pond damselflies depends on ambient light and visual system,” Animal Behaviour, vol. 76, no. 4, pp. 1357–1364, 2008.
[56]  D. Gomez and M. Théry, “Influence of ambient light on the evolution of colour signals: comparative analysis of a Neotropical rainforest bird community,” Ecology Letters, vol. 7, no. 4, pp. 279–284, 2004.
[57]  D. L. Clark, J. A. Roberts, M. Rector, and G. W. Uetz, “Spectral reflectance and communication in the wolf spider, Schizocosa ocreata (Hentz): simultaneous crypsis and background contrast in visual signals,” Behavioral Ecology and Sociobiology, vol. 65, no. 6, pp. 1237–1247, 2011.
[58]  M. E. Cummings, “Sensory trade-offs predict signal divergence in surfperch,” Evolution, vol. 61, no. 3, pp. 530–545, 2007.
[59]  R. C. Fuller, “Lighting environment predicts the relative abundance of male colour morphs in bluefin killifish (Lucania goodei) populations,” Proceedings of the Royal Society B, vol. 269, no. 1499, pp. 1457–1465, 2002.
[60]  S. M. Gray, L. M. Dill, F. Y. Tantu, E. R. Loew, F. Herder, and J. S. McKinnon, “Environment-contingent sexual selection in a colour polymorphic fish,” Proceedings of the Royal Society B, vol. 275, no. 1644, pp. 1785–1791, 2008.
[61]  M. B. Dugas and N. R. Franssen, “Nuptial coloration of red shiners (Cyprinella lutrensis) is more intense in turbid habitats,” Naturwissenschaften, vol. 98, no. 3, pp. 247–251, 2011.
[62]  M. C. Stoddard and R. O. Prum, “How colorful are birds? Evolution of the avian plumage color gamut,” Behavioral Ecology, vol. 22, pp. 1042–1052, 2011.
[63]  C. Lindstedt, N. Morehouse, H. Pakkanen et al., “Characterizing the pigment composition of a variable warning signal of Parasemia plantaginis larvae,” Functional Ecology, vol. 24, no. 4, pp. 759–766, 2010.
[64]  G. F. Grether, J. Hudon, and D. F. Millie, “Carotenoid limitation of sexual coloration along an environmental gradient in guppies,” Proceedings of the Royal Society B, vol. 266, no. 1426, pp. 1317–1322, 1999.
[65]  J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, Cambridge University Press, 1994.
[66]  P. A. Svensson and B. B. M. Wong, “Carotenoid-based signals in behavioural ecology: a review,” Behaviour, vol. 148, no. 2, pp. 131–189, 2011.
[67]  J. K. Craig and C. J. Foote, “Countergradient variation and secondary sexual color: phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka),” Evolution, vol. 55, no. 2, pp. 380–391, 2001.
[68]  S. R. Evans and B. C. Sheldon, “Quantitative genetics of a carotenoid-based color: heritability and persistent natal environmental effects in the great tit,” The American Naturalist, vol. 179, no. 1, pp. 79–94, 2012.
[69]  G. G. Rosenthal, T. Y. F. Martinez, F. J. G. de León, and M. J. Ryan, “Shared preferences by predators and females for male ornaments in swordtails,” The American Naturalist, vol. 158, no. 2, pp. 146–154, 2001.
[70]  M. E. Maan, B. Eshuis, M. P. Haesler, M. V. Schneider, J. J. M. van Alphen, and O. Seehausen, “Color polymorphism and predation in a Lake Victoria cichlid fish,” Copeia, no. 3, pp. 621–629, 2008.
[71]  J. G. J. Godin and H. E. McDonough, “Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait,” Behavioral Ecology, vol. 14, no. 2, pp. 194–200, 2003.
[72]  A. Moyaho, C. M. Garcia, and J. Manjarrez, “Predation risk is associated with the geographic variation of a sexually selected trait in a viviparous fish (Xenotoca variata),” Journal of Zoology, vol. 262, no. 3, pp. 265–270, 2004.
[73]  J. J. Meager, T. Solbakken, A. C. Utne-Palm, and T. Oen, “Effects of turbidity on the reactive distance, search time, and foraging success of juvenile Atlantic cod (Gadus morhua),” Canadian Journal of Fisheries and Aquatic Sciences, vol. 62, no. 9, pp. 1978–1984, 2005.
[74]  U. Candolin, T. Salesto, and M. Evers, “Changed environmental conditions weaken sexual selection in sticklebacks,” Journal of Evolutionary Biology, vol. 20, no. 1, pp. 233–239, 2007.
[75]  M. J?rvenp?? and K. Lindstr?m, “Water turbidity by algal blooms causes mating system breakdown in a shallow-water fish, the sand goby Pomatoschistus minutus,” Proceedings of the Royal Society B, vol. 271, no. 1555, pp. 2361–2365, 2004.
[76]  J. Sundin, A. Berglund, and G. Rosenqvist, “Turbidity hampers mate choice in a pipefish,” Ethology, vol. 116, no. 8, pp. 713–721, 2010.
[77]  P. O. Dunn, L. A. Whittingham, C. R. Freeman-Gallant, and J. DeCoste, “Geographic variation in the function of ornaments in the common yellowthroat Geothlypis trichas,” Journal of Avian Biology, vol. 39, no. 1, pp. 66–72, 2008.
[78]  G. F. Grether, G. R. Kolluru, F. H. Rodd, J. de la Cerda, and K. Shimazaki, “Carotenoid availability affects the development of a colour-based mate preference and the sensory bias to which it is genetically linked,” Proceedings of the Royal Society B, vol. 272, no. 1577, pp. 2181–2188, 2005.
[79]  G. F. Grether, “Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata),” Evolution, vol. 54, no. 5, pp. 1712–1724, 2000.
[80]  T. D. Kocher, “Adaptive evolution and explosive speciation: the cichlid fish model,” Nature Reviews Genetics, vol. 5, no. 4, pp. 288–298, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133