全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microsatellites Cross-Species Amplification across Some African Cichlids

DOI: 10.1155/2012/870935

Full-Text   Cite this paper   Add to My Lib

Abstract:

The transfer of the genomic resources developed in the Nile tilapia, Oreochromis niloticus, to other Tilapiines sensu lato and African cichlid would provide new possibilities to study this amazing group from genetics, ecology, evolution, aquaculture, and conservation point of view. We tested the cross-species amplification of 32 O. niloticus microsatellite markers in a panel of 15 species from 5 different African cichlid tribes: Oreochromines (Oreochromis, Sarotherodon), Boreotilapiines (Tilapia), Chromidotilapines, Hemichromines, and Haplochromines. Amplification was successfully observed for 29 markers (91%), with a frequency of polymorphic (P95) loci per species around 70%. The mean number of alleles per locus and species was 3.2 but varied from 3.7 within Oreochromis species to 1.6 within the nontilapia species. The high level of cross-species amplification and polymorphism of the microsatellite markers tested in this study provides powerful tools for a wide range of molecular genetic studies within tilapia species as well as for other African cichlids. 1. Introduction African cichlid fish are of extreme interest for both evolutionary biology and applied genetics purposes, including amazing models for speciation, adaptation, behaviour and neurosciences [1–5] as well as groups of major importance for aquaculture and fisheries (strain selection and improvement, stock assessment, etc.) [6–10]. A wide range of structural and functional genomic resources have been developed for cichlids in the past 15 years, predominantly in the Nile tilapia, Oreochromis niloticus [11–14]. While genome sequencing projects are in progress for several African cichlids, the transfer of genomic resources from O. niloticus across the entire group of tilapias sensu lato as well as other African cichlid tribes would provide powerful tools to support a wide range of evolutionary biology studies, including comparative phylogenetics, genome mapping, evolution of gene family sequence and expression, candidate gene analyses for adaptation, and population genetics. Microsatellite markers are one of the most interesting resources to transfer across lineages, as they can provide numerous locus-specific molecular markers and putatively homologous sequences across taxa. In addition to their high level of polymorphism, the evolutionary conservation of the flanking region of microsatellite loci allows large-scale heterospecific amplification [15, 16], as previously shown in various animal groups, particularly fish [17–19]. However, the rate of cross-species amplification varies widely

References

[1]  T. D. Kocher, “Adaptive evolution and explosive speciation: the cichlid fish model,” Nature Reviews Genetics, vol. 5, no. 4, pp. 288–298, 2004.
[2]  I. Kornfield and P. F. Smith, “African cichlid fishes: model systems for evolutionary biology,” Annual Review of Ecology and Systematics, vol. 31, pp. 163–196, 2000.
[3]  O. Seehausen, “African cichlid fish: a model system in adaptive radiation research,” Proceedings of the Royal Society B, vol. 273, no. 1597, pp. 1987–1998, 2006.
[4]  G. W. Barlow, Cichlid Fishes: Nature's Grand Experiment in Evolution, Perseus Books, Cambridge, UK, 2000.
[5]  H. A. Hofmann, “Functional genomics of neural and behavioral plasticity,” Journal of Neurobiology, vol. 54, no. 1, pp. 272–282, 2003.
[6]  A. E. Eknath and G. Hulata, “Use and exchange of genetic resources of Nile tilapia (Oreochromis niloticus),” Reviews in Aquaculture, vol. 1, no. 3-4, pp. 197–213, 2009.
[7]  H. Josupeit, World Market of Tilapia. Globefish Research Programme, FAO, Rome, Italy, 2005.
[8]  R. S. V. Pullin, “Cichlids in aquaculture,” in Cichlid Fishes: Behaviour, Ecology and Evolution, M. Keenleyside, Ed., pp. 280–300, Chapman & Hall, London, UK, 1991.
[9]  O. L. F. Weyl, A. J. Ribbink, and D. Tweddlel, “Lake Malawi: fishes, fisheries, biodiversity, health and habitat,” Aquatic Ecosystem Health and Management, vol. 13, no. 3, pp. 241–254, 2010.
[10]  F. Witte and W. L. T. van Densen, Fish Stocks and Fisheries; A Handbook for Field Observations, Samara House, Cardigan, UK, 1995.
[11]  T. D. Kocher, “Status of genomic resources in tilapia (Oreochromis spp.),” in Proceedings of the Plant & Animal Genome Conference, San Diego, Calif, USA, January 2001.
[12]  T. D. Kocher, “Genome sequence of a cichlid fish: the Nile Tilapia (Oreochromis niloticus),” Proposal to the JGI Community Sequencing Program by he Cichlid Genome Consortium, 2005.
[13]  W. J. Lee and T. D. Kocher, “Microsatellite DNA markers for genetic mapping in Oreochromis niloticus,” Journal of Fish Biology, vol. 49, no. 1, pp. 169–171, 1996.
[14]  T. D. Kocher, W. J. Lee, H. Sobolewska, D. Penman, and B. McAndrew, “A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus),” Genetics, vol. 148, no. 3, pp. 1225–1232, 1998.
[15]  A. Estoup and B. Angers, “Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations,” in Advances in Molecular Ecology, G. R. Carvalho, Ed., pp. 55–79, IOS Press & Ohmsha, 1998.
[16]  P. Jarne and P. J. L. Lagoda, “Microsatellites, from molecules to populations and back,” Trends in Ecology and Evolution, vol. 11, no. 10, pp. 424–429, 1996.
[17]  J. A. DeWoody and J. C. Avise, “Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals,” Journal of Fish Biology, vol. 56, no. 3, pp. 461–473, 2000.
[18]  C. Rico, I. Rico, and G. Hewitt, “470 million years of conservation of microsatellite loci among fish species,” Proceedings of the Royal Society B, vol. 263, no. 1370, pp. 549–557, 1996.
[19]  R. Zardoya, D. M. Vollmer, C. Craddock, J. T. Streelman, S. Karl, and A. Meyer, “Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes),” Proceedings of the Royal Society B, vol. 263, no. 1376, pp. 1589–1598, 1996.
[20]  C. R. Primmer, A. P. Moller, and H. Ellegren, “A wide-range survey of cross-species microsatellite amplification in birds,” Molecular Ecology, vol. 5, no. 3, pp. 365–378, 1996.
[21]  B. Y. Lee, W. J. Lee, J. T. Streelman et al., “A second-generation genetic linkage map of tilapia (Oreochromis spp.),” Genetics, vol. 170, no. 1, pp. 237–244, 2005.
[22]  B. Y. Lee, G. Hulata, and T. D. Kocher, “Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus),” Heredity, vol. 92, no. 6, pp. 543–549, 2004.
[23]  B. Y. Lee, D. J. Penman, and T. D. Kocher, “Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis,” Animal Genetics, vol. 34, no. 5, pp. 379–383, 2003.
[24]  J. T. Streelman and T. D. Kocher, “Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia,” Physiological Genomics, vol. 2002, no. 9, pp. 1–4, 2002.
[25]  K. A. Kellogg, J. A. Markert, J. R. Stauffer, and T. D. Kocher, “Microsatellite variation demonstrates multiple paternity in lekking cichlid fishes from Lake Malawi, Africa,” Proceedings of the Royal Society B, vol. 260, no. 1357, pp. 79–84, 1995.
[26]  M. J. H. Van Oppen, C. Rico, J. C. Deutsch, G. F. Turner, and G. M. Hewitt, “Isolation and characterization of microsatellite loci in the cichlid fish Pseudotropheus zebra,” Molecular Ecology, vol. 6, no. 4, pp. 387–388, 1997.
[27]  L. Wu, L. Kaufman, and P. A. Fuerst, “Isolation of microsatellite markers in Astatoreochromis alluaudi and their cross-species amplifications in other African cichlids,” Molecular Ecology, vol. 8, no. 5, pp. 895–897, 1999.
[28]  M. I. Taylor, F. Meardon, G. Turner, O. Seehausen, H. D. J. Mrosso, and C. Rico, “Characterization of tetranucleotide microsatellite loci in a Lake Victorian, haplochromine cichlid fish: a Pundamilia pundamilia x Pundamilia nyererei hybrid,” Molecular Ecology Notes, vol. 2, no. 4, pp. 443–445, 2002.
[29]  R. C. Albertson, J. T. Streelman, and T. D. Kocher, “Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5252–5257, 2003.
[30]  E. Crispo, C. Hagen, T. Glenn, G. Geneau, and L. J. Chapman, “Isolation and characterization of tetranucleotide microsatellite markers in a mouth-brooding haplochromine cichlid fish (Pseudocrenilabrus multicolor victoriae) from Uganda,” Molecular Ecology Notes, vol. 7, no. 6, pp. 1293–1295, 2007.
[31]  K. Maeda, H. Takeshima, S. Mizoiri, N. Okada, M. Nishida, and H. Tachida, “Isolation and characterization of microsatellite loci in the cichlid fish in Lake Victoria, Haplochromis chilotes,” Molecular Ecology Resources, vol. 8, no. 2, pp. 428–430, 2008.
[32]  M. Sanetra, F. Henning, S. Fukamachi, and A. Meyer, “A microsatellite-based genetic linkage map of the cichlid fish, Astatotilapia burtoni (Teleostei): a comparison of genomic architectures among rapidly speciating cichlids,” Genetics, vol. 182, no. 1, pp. 387–397, 2009.
[33]  J. A. Markert, R. C. Schelly, and M. L. Stiassny, “Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids,” BMC Evolutionary Biology, vol. 10, no. 1, article 149, 2010.
[34]  D. Neumann, M. L. J. Stiassny, and U. K. Schliewen, “Two new sympatric Sarotherodon species (Pisces: Cichlidae) endemic to Lake Ejagham, Cameroon, west-central Africa, with comments on the Sarotherodon galilaeus species complex,” Zootaxa, no. 2765, pp. 1–20, 2011.
[35]  M. L. J. Stiassny and U. K. Schliewen, “Congochromis, a new cichlid genus (Teleostei: Cichlidae) from Central Africa, with the description of a new species from the upper Congo River, democratic Republic of Congo,” American Museum Novitates, no. 3576, pp. 1–14, 2007.
[36]  X. Rognon and R. Guyomard, “Large extent of mitochondrial DNA transfer from Oreochromis aureus to O. niloticus in West Africa,” Molecular Ecology, vol. 12, no. 2, pp. 435–445, 2003.
[37]  R. S. V. Pullin, Ressources Génétiques en Tilapias pour L'aquaculture, ICLARM, Manila, Philippines, 1988.
[38]  E. Trewavas, Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia, British Museum Natural History, London, UK, 1983.
[39]  S. Nagl, H. Tichy, W. E. Mayer, I. E. Samonte, B. J. McAndrew, and J. Klein, “Classification and phylogenetic relationships of African tilapiine fishes inferred from mitochondrial DNA sequences,” Molecular Phylogenetics and Evolution, vol. 20, no. 3, pp. 361–374, 2001.
[40]  V. Klett and A. Meyer, “What, if anything, is a Tilapia? Mitochondrial ND2 phylogeny of tilapiines and the evolution of parental care systems in the African cichlid fishes,” Molecular Biology and Evolution, vol. 19, no. 6, pp. 865–883, 2002.
[41]  J. Schwarzer, B. Misof, D. Tautz, and U. K. Schliewen, “The root of the East African cichlid radiations,” BMC Evolutionary Biology, vol. 9, no. 1, article 186, 2009.
[42]  G. W. Wohlfarth, “The unexploited potential of tilapia hybrids in aquaculture,” Aquaculture & Fisheries Management, vol. 25, no. 8, pp. 781–788, 1994.
[43]  M. J. Genner, O. Seehausen, D. H. Lunt et al., “Age of cichlids: new dates for ancient lake fish radiations,” Molecular Biology and Evolution, vol. 24, no. 5, pp. 1269–1282, 2007.
[44]  “Marqueurs microsatellites: isolement à l'aide de sondes non-radioactives, caractérisation et mise au point,” http://www.agroparistech.fr/svs/genere/microsat/microsat.htm.
[45]  A. Estoup, K. Gharbi, M. SanCristobal, C. Chevalet, P. Haffray, and R. Guyomard, “Parentage assignment using microsatellites in turbot (Scophthalmus maximus) and rainbow trout (Oncorhynchus mykiss) hatchery populations,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 55, no. 3, pp. 715–725, 1998.
[46]  K. Belkhir, P. Borsa, L. Chikhi, N. Raufaste, and F. Bonhomme, GENETIX 4.02, Logiciel Sous Windows pour la Génétique des Populations, Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413