全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Transcriptional profile of maize roots under acid soil growth

DOI: 10.1186/1471-2229-10-196

Full-Text   Cite this paper   Add to My Lib

Abstract:

When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins.This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted several pathways that are related to Al toxicity and tolerance during growth in acid soil. We found several genes that were not found in previous studies using hydroponic experiments, increasing our understanding of plant responses to acid soil. The use of two germplasms with markedly different Al tolerances allowed the identification of genes that are a valuable tool for assessing the mechanisms of Al tolerance in maize in acid soil.Acid soils are the most important cause of low yield for many crops [1]. About 30% of the world's soils are acidic, and 60% of them are in tropical and subtropical areas associated with long periods of hot an

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413