全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
GigaScience  2013 

Crowdsourcing genomic analyses of ash and ash dieback – power to the people

DOI: 10.1186/2047-217x-2-2

Keywords: Crowdsource, Genomics, Ash dieback, Open source, Altmetrics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ash dieback is a devastating disease of ash trees caused by the aggressive fungal pathogen Chalara fraxinea. This fungus emerged in the early 1990s in Poland and has since spread west across Europe reaching native forests in the UK late last year. The emergence of Chalara in the UK caused public outcry where up to 90% of the more than 80 million ash trees are thought to be under threat. The disease, which is a newcomer to Britain, was first reported in the natural environment in October 2012 and has since been recorded in native woodland throughout the UK. There is no known treatment for ash dieback, current control measures include burning infected trees to try and prevent spread [1] and the implications for the UK environment and the economy remain stark.To kick start genomic analyses of the pathogen and host, we took the unconventional step of rapidly generating and releasing genomic sequence data. We released the data through our new ash and ash dieback website, oadb.tsl.ac.uk, which we launched in December 2012. Speed is essential in responses to rapidly appearing and threatening diseases and with this initiative we aim to make it possible for experts from around the world to access the data and analyse it immediately, speeding up the process of discovery. We hope that by providing data as soon as possible we will stimulate crowdsourcing and open community engagement to tackle this devastating pathogen.We have generated and released Illumina sequence data of both the transcriptome and genome of Chalara and the transcriptome of infected and uninfected ash trees. We took the unusual first step of directly sequencing the “interaction transcriptome” [2] of a lesion dissected from an infected ash twig collected in the field. This enabled us to respond quickly, generating useful information without time-consuming standard laboratory culturing; the shortest route from the wood to the sequencer to the computer.The Chalara transcriptome data, generated at The Sainsbury

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133