全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Renin-Angiotensin System Hyperactivation Can Induce Inflammation and Retinal Neural Dysfunction

DOI: 10.1155/2012/581695

Full-Text   Cite this paper   Add to My Lib

Abstract:

The renin-angiotensin system (RAS) is a hormone system that has been classically known as a blood pressure regulator but is becoming well recognized as a proinflammatory mediator. In many diverse tissues, RAS pathway elements are also produced intrinsically, making it possible for tissues to respond more dynamically to systemic or local cues. While RAS is important for controlling normal inflammatory responses, hyperactivation of the pathway can cause neural dysfunction by inducing accelerated degradation of some neuronal proteins such as synaptophysin and by activating pathological glial responses. Chronic inflammation and oxidative stress are risk factors for high incidence vision-threatening diseases such as diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. In fact, increasing evidence suggests that RAS inhibition may actually prevent progression of various ocular diseases including uveitis, DR, AMD, and glaucoma. Therefore, RAS inhibition may be a promising therapeutic approach to fine-tune inflammatory responses and to prevent or treat certain ocular and neurodegenerative diseases. 1. Introduction Most visual disorders occur in the retina, which is a part of the central nervous system (CNS) and consists of neurons, glia, pigment epithelium (RPE), and blood vessels. Currently, diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma are the top causes of blindness in the developed countries. These diseases can occur when local or systemic neuronal and vascular homeostasis mechanisms are dysregulated. The highest risk factor for many of these diseases is aging [1–3], and as is the case with other age-related diseases such as Alzheimer’s disease, cardiovascular disease, cancer, arthritis, osteoporosis, and hypertension, accumulating evidence suggests that chronic inflammation and oxidative stress can accelerate or promote disease progression [4–6]. The renin-angiotensin system (RAS) is classically known as a systemic blood-pressure-regulating system. However, it is becoming widely recognized as an inflammation regulator as well. Independent of systemic RAS, tissue intrinsic RASs have been identified in various tissues (including the retina) and are important for maintaining local homeostasis. Elements of the RAS pathway are highly conserved in many species including invertebrates and humans demonstrating that its functions are evolutionarily conserved, although spatial expression patterns differ slightly between different species [7]. We have reported that angiotensin II type 1 receptor blocker

References

[1]  R. Klein, B. E. K. Klein, and K. L. P. Linton, “Prevalence of age-related maculopathy: the Beaver Dam Eye study,” Ophthalmology, vol. 99, no. 6, pp. 933–943, 1992.
[2]  J. M. Tielsch, A. Sommer, J. Katz, R. M. Royall, H. A. Quigley, and J. Javitt, “Racial variations in the prevalence of primary open-angle glaucoma: the Baltimore eye survey,” Journal of the American Medical Association, vol. 266, no. 3, pp. 369–374, 1991.
[3]  M. D. Davis, M. R. Fisher, R. E. Gangnon et al., “Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: early treatment diabetic retinopathy study report 18,” Investigative Ophthalmology and Visual Science, vol. 39, no. 2, pp. 233–252, 1998.
[4]  M. C. Haigis and B. A. Yankner, “The Aging Stress Response,” Molecular Cell, vol. 40, no. 2, pp. 333–344, 2010.
[5]  C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, “Mechanisms Underlying Inflammation in Neurodegeneration,” Cell, vol. 140, no. 6, pp. 918–934, 2010.
[6]  R. S. Balaban, S. Nemoto, and T. Finkel, “Mitochondria, oxidants, and aging,” Cell, vol. 120, no. 4, pp. 483–495, 2005.
[7]  M. Salzet, L. Deloffre, C. Breton, D. Vieau, and L. Schoofs, “The angiotensin system elements in invertebrates,” Brain Research Reviews, vol. 36, no. 1, pp. 35–45, 2001.
[8]  T. Kurihara, Y. Ozawa, K. Shinoda et al., “Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation,” Investigative Ophthalmology and Visual Science, vol. 47, no. 12, pp. 5545–5552, 2006.
[9]  T. Kurihara, Y. Ozawa, N. Nagai et al., “Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina,” Diabetes, vol. 57, no. 8, pp. 2191–2198, 2008.
[10]  P. Chen, G. M. Scicli, M. Guo et al., “Role of angiotensin II in retinal leukostasis in the diabetic rat,” Experimental Eye Research, vol. 83, no. 5, pp. 1041–1051, 2006.
[11]  A. G. Miller, G. Tan, K. J. Binger et al., “Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function,” Diabetes, vol. 59, no. 12, pp. 3208–3215, 2010.
[12]  A. Miyazaki, N. Kitaichi, K. Ohgami et al., “Anti-inflammatory effect of angiotensin type 1 receptor antagonist on endotoxin-induced uveitis in rats,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 5, pp. 747–757, 2008.
[13]  F. Mori, T. Hikichi, T. Nagaoka, J. Takahashi, N. Kitaya, and A. Yoshida, “Inhibitory effect of losartan, an AT1 angiotensin II receptor antagonist, on increased leucocyte entrapment in retinal microcirculation of diabetic rats,” British Journal of Ophthalmology, vol. 86, no. 10, pp. 1172–1174, 2002.
[14]  N. Nagai, K. Izumi-Nagai, Y. Oike et al., “Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-κB pathway,” Investigative Ophthalmology and Visual Science, vol. 48, no. 9, pp. 4342–4350, 2007.
[15]  N. Nagai, K. Noda, T. Urano et al., “Selective suppression of pathologic, but not physiologic, retinal neovascularization by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology and Visual Science, vol. 46, no. 3, pp. 1078–1084, 2005.
[16]  N. Nagai, Y. Oike, K. Izumi-Nagai et al., “Angiotensin II type 1 receptor-mediated inflammation is required for choroidal neovascularization,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 10, pp. 2252–2259, 2006.
[17]  N. Nagai, Y. Oike, K. Noda et al., “Suppression of ocular inflammation in endotoxin-induced uveitis by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology and Visual Science, vol. 46, no. 8, pp. 2925–2931, 2005.
[18]  Y. Okunuki, Y. Usui, N. Nagai et al., “Suppression of experimental autoimmune uveitis by angiotensin II type 1 receptor blocker telmisartan,” Investigative Ophthalmology and Visual Science, vol. 50, no. 5, pp. 2255–2261, 2009.
[19]  J. L. Wilkinson-Berka, G. Tan, K. Jaworski, and S. Ninkovic, “Valsartan but not Atenolol Improves Vascular Pathology in Diabetic Ren-2 Rat Retina,” American Journal of Hypertension, vol. 20, no. 4, pp. 423–430, 2007.
[20]  L. E. Downie, K. M. Hatzopoulos, M. J. Pianta et al., “Angiotensin type-1 receptor inhibition is neuroprotective to amacrine cells in a rat model of retinopathy of prematurity,” Journal of Comparative Neurology, vol. 518, no. 1, pp. 41–63, 2010.
[21]  K. Fukuda, K. Hirooka, M. Mizote, T. Nakamura, T. Itano, and F. Shiraga, “Neuroprotection against retinal ischemia-reperfusion injury by blocking the angiotensin II type 1 receptor,” Investigative Ophthalmology & Visual Science, vol. 51, no. 7, pp. 3629–3638, 2010.
[22]  K. C. Silva, M. A. B. Rosales, S. K. Biswas, J. B. L. De Faria, and J. M. L. De Faria, “Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes,” Diabetes, vol. 58, no. 6, pp. 1382–1390, 2009.
[23]  H. Yang, K. Hirooka, K. Fukuda, and F. Shiraga, “Neuroprotective effects of angiotensin II type 1 receptor blocker in a rat model of chronic glaucoma,” Investigative Ophthalmology & Visual Science, vol. 50, no. 12, pp. 5800–5804, 2009.
[24]  N. Chaturvedi, M. Porta, R. Klein et al., “Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials,” The Lancet, vol. 372, no. 9647, pp. 1394–1402, 2008.
[25]  A. K. Sjolie, R. Klein, M. Porta et al., “Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial,” The Lancet, vol. 372, no. 9647, pp. 1385–1393, 2008.
[26]  M. Mauer, B. Zinman, R. Gardiner et al., “Renal and retinal effects of enalapril and losartan in type 1 diabetes,” New England Journal of Medicine, vol. 361, no. 1, pp. 40–51, 2009.
[27]  H. Goldblatt, J. Lynch, R. F. Hanzal, and W. W. Summerville, “Studies on experimental hypertension : I. The production of persistent elevation of systolic blood pressure by means of renal ischemia,” The Journal of Experimental Medicine, vol. 59, no. 3, pp. 347–379, 1934.
[28]  J. C. Fasciolo, B. A. Houssay, and A. C. Taquini, “The blood-pressure raising secretion of the ischaemic kidney,” The Journal of Physiology, vol. 94, no. 3, pp. 281–293, 1938.
[29]  I. H. Page, “On the nature of the pressor action of renin,” The Journal of Experimental Medicine, vol. 70, no. 5, pp. 521–542, 1939.
[30]  E. Braun-Menendez and I. H. Page, “Suggested revision of nomenclature—angiotensin,” Science, vol. 127, no. 3292, p. 242, 1958.
[31]  L. T. Skeggs Jr, J. R. Kahn, and N. P. Shumway, “The preparation and function of the hypertensin-converting enzyme,” The Journal of Experimental Medicine, vol. 103, no. 3, pp. 295–299, 1956.
[32]  S. Y. Lin and T. L. Goodfriend, “Angiotensin receptors,” The American journal of physiology, vol. 218, no. 5, pp. 1319–1328, 1970.
[33]  S. Sarlos, B. Rizkalla, C. J. Moravski, Z. Cao, M. E. Cooper, and J. L. Wilkinson-Berka, “Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin,” American Journal of Pathology, vol. 163, no. 3, pp. 879–887, 2003.
[34]  Q. Xue, C. Dasgupta, M. Chen, and L. Zhang, “Foetal hypoxia increases cardiac AT2R expression and subsequent vulnerability to adult ischaemic injury,” Cardiovascular Research, vol. 89, no. 2, pp. 300–308, 2011.
[35]  K. Sasaki, Y. Yamano, S. Bardhan et al., “Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor,” Nature, vol. 351, no. 6323, pp. 230–233, 1991.
[36]  T. J. Murphy, R. W. Alexander, K. K. Griendling, M. S. Runge, and K. E. Bernstein, “Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor,” Nature, vol. 351, no. 6323, pp. 233–236, 1991.
[37]  M. Ushio-Fukai, K. K. Griendling, M. Akers, P. R. Lyons, and R. W. Alexander, “Temporal dispersion of activation of phospholipase C-β1 and -γ isoforms by angiotensin II in vascular smooth muscle cells. Role of αq/11, α12, and βγ G protein subunits,” The Journal of Biological Chemistry, vol. 273, no. 31, pp. 19772–19777, 1998.
[38]  J. M. Anderson, M. A. Gimbrone, and R. W. Alexander, “Angiotensin II stimulates phosphorylation of the myosin light chain in cultured vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 256, no. 10, pp. 4693–4696, 1981.
[39]  D. E. Dostal, T. Murahashi, and M. J. Peach, “Regulation of cytosolic calcium by angiotensins in vascular smooth muscle,” Hypertension, vol. 15, no. 6, pp. 815–822, 1990.
[40]  F. Soubrier, F. Alhenc-Gelas, C. Hubert et al., “Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 24, pp. 9386–9390, 1988.
[41]  L. J. Dell'Italia, Q. C. Meng, E. Balcells et al., “Compartmentalization of angiotensin II generation in the dog heart: evidence for independent mechanisms in intravascular and interstitial spaces,” Journal of Clinical Investigation, vol. 100, no. 2, pp. 253–258, 1997.
[42]  H. M. Kimbrough, E. D. Vaughan, R. M. Carey, and C. R. Ayers, “Effect of intrarenal angiotensin II blockade on renal function in conscious dogs,” Circulation Research, vol. 40, no. 2, pp. 174–178, 1977.
[43]  J. W. Ryan, “Renin-like enzyme in the adrenal gland,” Science, vol. 158, no. 3808, pp. 1589–1590, 1967.
[44]  D. Ganten, J. L. Minnich, P. Granger et al., “Angiotensin-forming enzyme in brain tissue,” Science, vol. 173, no. 3991, pp. 64–65, 1971.
[45]  A. Ichihara, M. Hayashi, Y. Kaneshiro et al., “Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin,” Journal of Clinical Investigation, vol. 114, no. 8, pp. 1128–1135, 2004.
[46]  G. Nguyen, F. Delarue, C. Burcklé, L. Bouzhir, T. Giller, and J. D. Sraer, “Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin,” Journal of Clinical Investigation, vol. 109, no. 11, pp. 1417–1427, 2002.
[47]  C. M. Cruciat, B. Ohkawara, S. P. Acebron et al., “Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling,” Science, vol. 327, no. 5964, pp. 459–463, 2010.
[48]  M. B. Marrero, B. Schieffer, W. G. Paxton et al., “Direct stimulation of Jak/STAT pathway by the anglotensin II AT1 receptor,” Nature, vol. 375, no. 6528, pp. 247–250, 1995.
[49]  B. Schieffer, M. Luchtefeld, S. Braun, A. Hilfiker, D. Hilfiker-Kleiner, and H. Drexler, “Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction,” Circulation Research, vol. 87, no. 12, pp. 1195–1201, 2000.
[50]  S. Kim, Y. Izumi, M. Yano et al., “Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery,” Circulation, vol. 97, no. 17, pp. 1731–1737, 1998.
[51]  D. F. Liao, J. L. Duff, G. Daum, S. L. Pelech, and B. C. Berk, “Angiotensin II stimulates MAP kinase kinase kinase activity in vascular smooth muscle cells: role of raf,” Circulation Research, vol. 79, no. 5, pp. 1007–1014, 1996.
[52]  D. F. Liao, B. Monia, N. Dean, and B. C. Berk, “Protein kinase C-ζ mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells,” Journal of Biological Chemistry, vol. 272, no. 10, pp. 6146–6150, 1997.
[53]  M. Nishida, S. Tanabe, Y. Maruyama et al., “Gα12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes,” Journal of Biological Chemistry, vol. 280, no. 18, pp. 18434–18441, 2005.
[54]  S. Rajagopalan, S. Kurz, T. Münzel et al., “Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone,” Journal of Clinical Investigation, vol. 97, no. 8, pp. 1916–1923, 1996.
[55]  R. M. Touyz, X. Chen, F. Tabet et al., “Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II,” Circulation Research, vol. 90, no. 11, pp. 1205–1213, 2002.
[56]  K. K. Griendling, C. A. Minieri, J. D. Ollerenshaw, and R. W. Alexander, “Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells,” Circulation Research, vol. 74, no. 6, pp. 1141–1148, 1994.
[57]  P. N. Seshiah, D. S. Weber, P. Rocic, L. Valppu, Y. Taniyama, and K. K. Griendling, “Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators,” Circulation Research, vol. 91, no. 5, pp. 406–413, 2002.
[58]  Y. Moriguchi, H. Matsubara, Y. Mori et al., “Angiotensin II-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-β synthesis via transcriptional and posttranscriptional mechanisms,” Circulation Research, vol. 84, no. 9, pp. 1073–1084, 1999.
[59]  S. Kagiyama, S. Eguchi, G. D. Frank, T. Inagami, Y. C. Zhang, and M. I. Phillips, “Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense,” Circulation, vol. 106, no. 8, pp. 909–912, 2002.
[60]  D. N. Muller, R. Dechend, E. M. A. Mervaala et al., “NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats,” Hypertension, vol. 35, no. 1, pp. 193–201, 2000.
[61]  A. Fiebeler, F. Schmidt, D. N. Müller et al., “Mineralocorticoid receptor affects AP-1 and nuclear factor-κB activation in angiotensin II-induced cardiac injury,” Hypertension, vol. 37, no. 2, pp. 787–793, 2001.
[62]  M. Hernández-Presa, C. Bustos, M. Ortego et al., “Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis,” Circulation, vol. 95, no. 6, pp. 1532–1541, 1997.
[63]  S. Kudoh, I. Komuro, T. Mizuno et al., “Angiotensin II stimulates c-jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats,” Circulation Research, vol. 80, no. 1, pp. 139–146, 1997.
[64]  P. L. Puri, M. L. Avantaggiati, V. L. Burgio et al., “Reactive oxygen intermediates mediate angiotensin II-induced c-Jun·c-Fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells,” Journal of Biological Chemistry, vol. 270, no. 38, pp. 22129–22134, 1995.
[65]  D. E. Vaughan, S. A. Lazos, and K. Tong, “Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis,” Journal of Clinical Investigation, vol. 95, no. 3, pp. 995–1001, 1995.
[66]  A. Daugherty, M. W. Manning, and L. A. Cassis, “Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1605–1612, 2000.
[67]  M. A. Ondetti, B. Rubin, and D. W. Cushman, “Design of specific inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents,” Science, vol. 196, no. 4288, pp. 441–444, 1977.
[68]  P. B. M. W. M. Timmermans, D. J. Carini, A. T. Chiu et al., “Angiotensin II receptor antagonists: from discovery to antihypertensive drugs,” Hypertension, vol. 18, no. 5, pp. I-136–I-142, 1991.
[69]  P. C. Wong, W. A. Price, A. T. Chiu et al., “Nonpeptide angiotensin II receptor antagonists. Studies with EXP9270 and DuP 753,” Hypertension, vol. 15, no. 6, pp. 823–834, 1990.
[70]  D. R. Green, L. Galluzzi, and G. Kroemer, “Mitochondria and the autophagy-inflammation-cell death axis in organismal aging,” Science, vol. 333, no. 6046, pp. 1109–1112, 2011.
[71]  G. Baiardi, C. Bregonzio, M. Jezova, I. Armando, and J. M. Saavedra, “Angiotensin II AT1 receptor blockade prolongs the lifespan of spontaneously hypertensive rats and reduces stress-induced release of catecholamines, glucocorticoids, and vasopressin,” Annals of the New York Academy of Sciences, vol. 1018, pp. 131–136, 2004.
[72]  W. Linz, H. Heitsch, B. A. Sch?lkens, and G. Wiemer, “Long-term angiotensin II type 1 receptor blockade with fonsartan doubles lifespan of hypertensive rats,” Hypertension, vol. 35, no. 4, pp. 908–913, 2000.
[73]  W. Linz, T. Jessen, R. H. A. Becker, B. A. Sch?lkens, and G. Wiemer, “Long-term ACE inhibition doubles lifespan of hypertensive rats,” Circulation, vol. 96, no. 9, pp. 3164–3172, 1997.
[74]  A. Benigni, D. Corna, C. Zoja et al., “Disruption of the Ang II type 1 receptor promotes longevity in mice,” Journal of Clinical Investigation, vol. 119, no. 3, pp. 524–530, 2009.
[75]  F. A. Mendelsohn, R. Quirion, J. M. Saavedra, G. Aguilera, and K. J. Catt, “Autoradiographic localization of angiotensin II receptors in rat brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 5, pp. 1575–1579, 1984.
[76]  J. M. Saavedra, F. M.A. Correa, and L. M. Plunkett, “Binding of angiotensin and atrial natriuretic peptide in brain of hypertensive rats,” Nature, vol. 320, no. 6064, pp. 758–760, 1986.
[77]  J. Buggy, A. E. Fisher, and W. E. Hoffman, “Ventricular obstruction: effect on drinking induced by intracranial injection of angiotensin,” Science, vol. 190, no. 4209, pp. 72–74, 1975.
[78]  M. Van Houten, E. L. Schiffrin, and J. F. E. Mann, “Radioautographic localization of specific binding sites for blood-borne angiotensin II in the rat brain,” Brain Research, vol. 186, no. 2, pp. 480–485, 1980.
[79]  R. Castren and J. M. Saavedra, “Angiotensin II receptors in paraventricular nucleus, subfornical organ, and pituitary gland of hypophysectomized, adrenalectomized, and vasopressin-deficient rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 2, pp. 725–729, 1989.
[80]  C. Chevillard and J. M. Saavedra, “High angiotensin-converting enzyme activity in the neurohypophysis of Brattleboro rats,” Science, vol. 216, no. 4546, pp. 646–647, 1982.
[81]  S. Landas, M. I. Phillips, J. F. Stamler, and M. K. Raizada, “Visualization of specific angiotensin II binding sites in the brain by fluorescent microscopy,” Science, vol. 210, no. 4471, pp. 791–793, 1980.
[82]  M. C. Zimmerman, E. Lazartigues, J. A. Lang et al., “Superoxide mediates the actions of angiotensin II in the central nervous system,” Circulation Research, vol. 91, no. 11, pp. 1038–1045, 2002.
[83]  A. H. J. Danser, M. A. Van Den Dorpel, J. Deinum et al., “Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy,” Journal of Clinical Endocrinology and Metabolism, vol. 68, no. 1, pp. 160–167, 1989.
[84]  J. Deinum, F. H. M. Derkx, A. H. J. Danser, and M. A. D. H. Schalekamp, “Identification and quantification of renin and prorenin in the bovine eye,” Endocrinology, vol. 126, no. 3, pp. 1673–1682, 1990.
[85]  S. J. Sramek, I. H. L. Wallow, R. P. Day, and E. N. Ehrlich, “Ocular renin-angiotensin: immunohistochemical evidence for the presence of prorenin in eye tissue,” Investigative Ophthalmology and Visual Science, vol. 29, no. 11, pp. 1749–1752, 1988.
[86]  J. L. Berka, A. J. Stubbs, D. Z. M. Wang et al., “Renin-containing muller cells of the retina display endocrine features,” Investigative Ophthalmology and Visual Science, vol. 36, no. 7, pp. 1450–1458, 1995.
[87]  C. R. Brandt, A. M. Pumfery, B. Micales et al., “Renin mRNA is synthesized locally in rat ocular tissues,” Current Eye Research, vol. 13, no. 10, pp. 755–763, 1994.
[88]  S. Satofuka, A. Ichihara, N. Nagai et al., “Suppression of ocular inflammation in endotoxin-induced uveitis by inhibiting nonproteolytic activation of prorenin,” Investigative Ophthalmology & Visual Science, vol. 47, no. 6, pp. 2686–2692, 2006.
[89]  J. L. Wilkinson-Berka, R. Heine, G. Tan et al., “RILLKKMPSV Influences the vasculature, neurons and glia, and (Pro)renin receptor expression in the Retina,” Hypertension, vol. 55, no. 6, pp. 1454–1460, 2010.
[90]  S. J. Sramek, I. H. L. Wallow, D. A. Tewksbury, C. R. Brandt, and G. L. Poulsen, “An ocular renin-angiotensin system: immunohistochemistry of angiotensinogen,” Investigative Ophthalmology and Visual Science, vol. 33, no. 5, pp. 1627–1632, 1992.
[91]  C. Gerhardinger, M. B. Costa, M. C. Coulombe, I. Toth, T. Hoehn, and P. Grosu, “Expression of acute-phase response proteins in retinal Muller cells in diabetes,” Investigative Ophthalmology and Visual Science, vol. 46, no. 1, pp. 349–357, 2005.
[92]  J. Wagner, A. H. J. Danser, F. H. M. Derkx et al., “Demonstration of renin mRNA, angiotensinogen mRNA, and angiotensin converting enzyme mRNA expression in the human eye: evidence for an intraocular renin-angiotensin system,” British Journal of Ophthalmology, vol. 80, no. 2, pp. 159–163, 1996.
[93]  R. Igic and V. Kojovic, “Angiotensin I converting enzyme (kininase II) in ocular tissues,” Experimental Eye Research, vol. 30, no. 3, pp. 299–303, 1980.
[94]  G. Ferrari-Dileo, J. W. Ryan, E. J. Rockwood, E. B. Davis, and D. R. Anderson, “Angiotensin-converting enzyme in bovine, feline, and human ocular tissues,” Investigative Ophthalmology and Visual Science, vol. 29, no. 6, pp. 876–881, 1988.
[95]  E. Savaskan, K. U. L?ffler, F. Meier, F. Müller-Spahn, J. Flammer, and P. Meyer, “Immunohistochemical localization of angiotensin-converting enzyme, angiotensin II and AT1 receptor in human ocular tissues,” Ophthalmic Research, vol. 36, no. 6, pp. 312–320, 2004.
[96]  T. Kida, T. Ikeda, M. Nishimura et al., “Renin-angiotensin system in proliferative diabetic retinopathy and its gene expression in cultured human Müller cells,” Japanese Journal of Ophthalmology, vol. 47, no. 1, pp. 36–41, 2003.
[97]  A. H. J. Danser, F. H. M. Derkx, P. J. J. Admiraal, J. Deinum, P. T. V. M. De Jong, and M. A. D. H. Schalekamp, “Angiotensin levels in the eye,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 1008–1018, 1994.
[98]  K. H. Datum and E. Zrenner, “Angiotensin-like immunoreactive cells in the chicken retina,” Experimental Eye Research, vol. 53, no. 2, pp. 157–165, 1991.
[99]  P. Mallorga, R. W. Babilon, and M. F. Sugrue, “Angiotensin II receptors labelled with 125I-[Sar1,Ile8]-AII in albino rabbit ocular tissues,” Current Eye Research, vol. 8, no. 8, pp. 841–849, 1989.
[100]  P. D. Senanayake, J. Drazba, K. Shadrach et al., “Angiotensin II and its receptor subtypes in the human retina,” Investigative Ophthalmology and Visual Science, vol. 48, no. 7, pp. 3301–3311, 2007.
[101]  C. Sun, H. Li, L. Leng, M. K. Raizada, R. Bucala, and C. Sumners, “Macrophage migration inhibitory factor: an intracellular inhibitor of angiotensin II-induced increases in neuronal activity,” Journal of Neuroscience, vol. 24, no. 44, pp. 9944–9952, 2004.
[102]  D. P. Li, S. R. Chen, and H. L. Pan, “Angiotensin II stimulates spinally projecting paraventricular neurons through presynaptic disinhibition,” Journal of Neuroscience, vol. 23, no. 12, pp. 5041–5049, 2003.
[103]  E. Guenther, S. Schmid, B. Hewig, and K. Kohler, “Two-fold effect of angiotensin II on voltage-dependent calcium currents in rat retinal ganglion cells,” Brain Research, vol. 718, no. 1-2, pp. 112–116, 1996.
[104]  E. Demant, K. Nagahara, and G. Niemeyer, “Effects of changes in systemic blood pressure on the electroretinogram of the cat: evidence for retinal autoregulation,” Investigative Ophthalmology and Visual Science, vol. 23, no. 5, pp. 683–687, 1982.
[105]  P. C. Jacobi, H. Osswald, B. Jurklies, and E. Zrenner, “Neuromodulatory effects of the renin-angiotensin system on the cat electroretinogram,” Investigative Ophthalmology and Visual Science, vol. 35, no. 3, pp. 973–980, 1994.
[106]  B. Jurklies, A. Eckstein, P. Jacobi, K. Kohler, T. Risler, and E. Zrenner, “The renin-angiotensin system–a possible neuromodulator in the human retina?” German journal of ophthalmology, vol. 4, no. 3, pp. 144–150, 1995.
[107]  K. Hashizume, Y. Mashima, T. Fumayama et al., “Genetic polymorphisms in the angiotensin II receptor gene and their association with open-angle glaucoma in a Japanese population,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 1993–2001, 2005.
[108]  Y.-P. Liu, T. Kuznetsova, L. Thijs et al., “Are retinal microvascular phenotypes associated with the 1675G/A polymorphism in the angiotensin II Type-2 receptor gene,” American Journal of Hypertension, vol. 24, no. 12, pp. 1300–1305, 2011.
[109]  K. Yuki, Y. Ozawa, T. Yoshida et al., “Retinal ganglion cell loss in superoxide dismutase 1 deficiency,” Investigative Ophthalmology & Visual Science, vol. 52, no. 7, pp. 4143–4150, 2011.
[110]  Y. Imamura, S. Noda, K. Hashizume et al., “Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11282–11287, 2006.
[111]  L. P. Aiello, R. L. Avery, P. G. Arrigg et al., “Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders,” New England Journal of Medicine, vol. 331, no. 22, pp. 1480–1487, 1994.
[112]  E. S. Gragoudas, A. P. Adamis, E. T. Cunningham, M. Feinsod, and D. R. Guyer, “Pegaptanib for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 351, no. 27, pp. 2805–2816, 2004.
[113]  P. J. Rosenfeld, D. M. Brown, J. S. Heier et al., “Ranibizumab for neovascular age-related macular degeneration,” New England Journal of Medicine, vol. 355, no. 14, pp. 1419–1431, 2006.
[114]  S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164 is proinflammatory in the diabetic retina,” Investigative Ophthalmology and Visual Science, vol. 44, no. 5, pp. 2155–2162, 2003.
[115]  S. Ishida, T. Usui, K. Yamashiro et al., “VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization,” Journal of Experimental Medicine, vol. 198, no. 3, pp. 483–489, 2003.
[116]  S. Ishida, K. Yamashiro, T. Usui et al., “Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease,” Nature Medicine, vol. 9, no. 6, pp. 781–788, 2003.
[117]  A. Otani, H. Takagi, K. Suzuma, and Y. Honda, “Angiotensin II potentiates vascular endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells,” Circulation Research, vol. 82, no. 5, pp. 619–628, 1998.
[118]  A. Otani, H. Takagi, H. Oh, S. Koyama, and Y. Honda, “Angiotensin II induces expression of the Tie2 receptor ligand, angiopoietin-2, in bovine retinal endothelial cells,” Diabetes, vol. 50, no. 4, pp. 867–875, 2001.
[119]  A. Otani, H. Takagi, H. Oh et al., “Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes,” Investigative Ophthalmology and Visual Science, vol. 41, no. 5, pp. 1192–1199, 2000.
[120]  L. E.H. Smith, E. Wesolowski, A. McLellan et al., “Oxygen-induced retinopathy in the mouse,” Investigative Ophthalmology and Visual Science, vol. 35, no. 1, pp. 101–111, 1994.
[121]  T. Alon, I. Hemo, A. Itin, J. Pe'er, J. Stone, and E. Keshet, “Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity,” Nature Medicine, vol. 1, no. 10, pp. 1024–1028, 1995.
[122]  C. J. Moravski, D. J. Kelly, M. E. Cooper et al., “Retinal neovascularization is prevented by blockade of the renin-angiotensin system,” Hypertension, vol. 36, no. 6, pp. 1099–1104, 2000.
[123]  M. Lonchampt, L. Pennel, and J. Duhault, “Hyperoxia/normoxia-driven retinal angiogenesis in mice: a role for angiotensin II,” Investigative Ophthalmology and Visual Science, vol. 42, no. 2, pp. 429–432, 2001.
[124]  S. Satofuka, A. Ichihara, N. Nagai et al., “Role of nonproteolytically activated prorenin in pathologic, but not physiologic, retinal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 48, no. 1, pp. 422–429, 2007.
[125]  H. Funatsu, H. Yamashita, T. Ikeda, Y. Nakanishi, S. Kitano, and S. Hori, “Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with diabetic macular edema and other retinal disorders,” American Journal of Ophthalmology, vol. 133, no. 4, pp. 537–543, 2002.
[126]  H. Funatsu, H. Yamashita, Y. Nakanishi, and S. Hori, “Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy,” British Journal of Ophthalmology, vol. 86, no. 3, pp. 311–315, 2002.
[127]  D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. Susan Harvey, and H. F. Dvorak, “Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid,” Science, vol. 219, no. 4587, pp. 983–985, 1983.
[128]  M. Larsen, E. Hommel, H. H. Parving, and H. Lund-Andersen, “Protective effect of captopril on the blood-retina barrier in normotensive insulin-dependent diabetic patients with nephropathy and background retinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 228, no. 6, pp. 505–509, 1990.
[129]  B. Van Kooij, R. Fijnheer, J. De Boer et al., “A randomized, masked, cross-over trial of lisinopril for inflammatory macular edema,” American Journal of Ophthalmology, vol. 141, no. 4, pp. 646–651, 2006.
[130]  S. T. Knudsen, T. Bek, P. L. Poulsen, M. N. Hove, M. Rehling, and C. E. Mogensen, “Effects of losartan on diabetic maculopathy in type 2 diabetic patients: a randomized, double-masked study,” Journal of Internal Medicine, vol. 254, no. 2, pp. 147–158, 2003.
[131]  J. H. Kim, J. H. Kim, Y. S. Yu, C. S. Cho, and K.-W. Kim, “Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 621–628, 2009.
[132]  J. A. Phipps, A. C. Clermont, S. Sinha, T. J. Chilcote, S. E. Bursell, and E. P. Feener, “Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability,” Hypertension, vol. 53, no. 2, pp. 175–181, 2009.
[133]  H. Nakamura, M. Yamazaki, T. Ohyama et al., “Role of angiotensin II type 1 receptor on retinal vascular leakage in a rat oxygen-induced retinopathy model,” Ophthalmic Research, vol. 41, no. 4, pp. 210–215, 2009.
[134]  N. Chaturvedi, A. K. Sjolie, J. M. Stephenson, et al., “Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID study group. EURODIAB controlled trial of lisinopril in insulin-dependent diabetes mellitus,” The Lancet, vol. 351, no. 9095, pp. 28–31, 1998.
[135]  Y. Shirao and K. Kawasaki, “Electrical responses from diabetic retina,” Progress in Retinal and Eye Research, vol. 17, no. 1, pp. 59–76, 1998.
[136]  A. J. Barber, E. Lieth, S. A. Khin, D. A. Antonetti, A. G. Buchanan, and T. W. Gardner, “Neural apoptosis in the retina during experimental and human diabetes: early onset and effect of insulin,” Journal of Clinical Investigation, vol. 102, no. 4, pp. 783–791, 1998.
[137]  A. Ottlecz and T. Bensaoula, “Captopril ameliorates the decreased Na+,K+-ATPase activity in the retina of streptozotocin-induced diabetic rats,” Investigative Ophthalmology and Visual Science, vol. 37, no. 8, pp. 1633–1641, 1996.
[138]  R. E. Gilbert, D. J. Kelly, A. J. Cox et al., “Angiotensin converting enzyme inhibition reduces retinal overexpression of vascular endothelial growth factor and hyperpermeability in experimental diabetes,” Diabetologia, vol. 43, no. 11, pp. 1360–1367, 2000.
[139]  J. Z. Zhang, X. Xi, L. Gao, and T. S. Kern, “Captopril inhibits capillary degeneration in the early stages of diabetic retinopathy,” Current Eye Research, vol. 32, no. 10, pp. 883–889, 2007.
[140]  Z. Zheng, H. Chen, G. Ke et al., “Protective effect of perindopril on diabetic retinopathy is associated with decreased vascular endothelial growth factor-to-pigment epithelium-derived factor ratio: involvement of a mitochondria-reactive oxygen species pathway,” Diabetes, vol. 58, no. 4, pp. 954–964, 2009.
[141]  S. I. Yamagishi, M. Takeuchi, T. Matsui, K. Nakamura, T. Imaizumi, and H. Inoue, “Angiotensin II augments advanced glycation end product-induced pericyte apoptosis through RAGE overexpression,” FEBS Letters, vol. 579, no. 20, pp. 4265–4270, 2005.
[142]  S. Satofuka, A. Ichihara, N. Nagai et al., “(Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation,” Diabetes, vol. 58, no. 7, pp. 1625–1633, 2009.
[143]  J. J. Mullins, J. Peters, and D. Ganten, “Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene,” Nature, vol. 344, no. 6266, pp. 541–544, 1990.
[144]  C. J. Moravski, S. L. Skinner, A. J. Stubbs et al., “The renin-angiotensin system influences ocular endothelial cell proliferation in diabetes: transgenic and interventional studies,” American Journal of Pathology, vol. 162, no. 1, pp. 151–160, 2003.
[145]  A. A. Dosso, E. Rungger-Br?ndle, and P. M. Leuenberger, “Ultrastructural alterations in capillaries of the diabetic hypertensive rat retina: protective effects of ACE inhibition,” Diabetologia, vol. 47, no. 7, pp. 1196–1201, 2004.
[146]  A. G. Miller, G. Tan, K. J. Binger et al., “Candesartan attenuates diabetic retinal vascular pathology by restoring glyoxalase-I function,” Diabetes, vol. 59, no. 12, pp. 3208–3215, 2010.
[147]  P. Chen, A. M. Guo, P. A. Edwards, G. Trick, and A. G. Scicli, “Role of NADPH oxidase and ANG II in diabetes-induced retinal leukostasis,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 293, no. 4, pp. R1619–R1629, 2007.
[148]  J. Z. Zhang, L. Gao, M. Widness, X. Xi, and T. S. Kern, “Captopril inhibits glucose accumulation in retinal cells in diabetes,” Investigative Ophthalmology and Visual Science, vol. 44, no. 9, pp. 4001–4005, 2003.
[149]  X. Zhang, M. Lassila, M. E. Cooper, and Z. Cao, “Retinal Expression of Vascular Endothelial Growth Factor Is Mediated by Angiotensin Type 1 and Type 2 Receptors,” Hypertension, vol. 43, no. 2, pp. 276–281, 2004.
[150]  E. Sakurai, A. Anand, B. K. Ambati, N. Van Rooijen, and J. Ambati, “Macrophage depletion inhibits experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3578–3585, 2003.
[151]  C. Tsutsumi, K. H. Sonoda, K. Egashira et al., “The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization,” Journal of Leukocyte Biology, vol. 74, no. 1, pp. 25–32, 2003.
[152]  D. G. Espinosa-Heidmann, I. J. Suner, E. P. Hernandez, D. Monroy, K. G. Csaky, and S. W. Cousins, “Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization,” Investigative Ophthalmology and Visual Science, vol. 44, no. 8, pp. 3586–3592, 2003.
[153]  N. Nagai, Y. Oike, K. Izumi-Nagai et al., “Suppression of choroidal neovascularization hy inhibiting angiotensin-converting enzyme: minimal role of bradykinin,” Investigative Ophthalmology and Visual Science, vol. 48, no. 5, pp. 2321–2326, 2007.
[154]  S. Satofuka, A. Ichihara, N. Nagai et al., “(Pro)renin receptor promotes choroidal neovascularization by activating its signal transduction and tissue renin-angiotensin system,” American Journal of Pathology, vol. 173, no. 6, pp. 1911–1918, 2008.
[155]  G. E. Striker, F. Praddaude, O. Alcazar, S. W. Cousins, and M. E. Marin-Casta?o, “Regulation of angiotensin II receptors and extracellular matrix turnover in human retinal pigment epithelium: role of angiotensin II,” American Journal of Physiology, vol. 295, no. 6, pp. C1633–C1646, 2008.
[156]  F. Praddaude, S. W. Cousins, C. Pêcher, and M. E. Marin-Casta?o, “Angiotensin II-induced hypertension regulates AT1 receptor subtypes and extracellular matrix turnover in mouse retinal pigment epithelium,” Experimental Eye Research, vol. 89, no. 1, pp. 109–118, 2009.
[157]  O. Alcazar, S. W. Cousins, G. E. Striker, and M. E. Marin-Castano, “(Pro)renin receptor is expressed in human retinal pigment epithelium and participates in extracellular matrix remodeling,” Experimental Eye Research, vol. 89, no. 5, pp. 638–647, 2009.
[158]  M. Pons, S. W. Cousins, O. Alcazar, G. E. Striker, and M. E. Marin-Castano, “Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin ii receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: implications for age-related macular degeneration,” American Journal of Pathology, vol. 178, no. 6, pp. 2665–2681, 2011.
[159]  T. H. Wheeler-Schilling, K. Kohler, M. Sautter, and E. Guenther, “Angiotensin II receptor subtype gene expression and cellular localization in the retina and non-neuronal ocular tissues of the rat,” European Journal of Neuroscience, vol. 11, no. 10, pp. 3387–3394, 1999.
[160]  A. B. Cullinane, P. S. Leung, J. Ortego, M. Coca-Prados, and B. J. Harvey, “Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium,” British Journal of Ophthalmology, vol. 86, no. 6, pp. 676–683, 2002.
[161]  C. Costagliola, R. Di Benedetto, L. De Caprio, R. Verde, and L. Mastropasqua, “Effect of oral captopril (SQ 14225) on intraocular pressure in man,” European Journal of Ophthalmology, vol. 5, no. 1, pp. 19–25, 1995.
[162]  C. Costagliola, M. Verolino, M. Leonarda De Rosa, G. Iaccarino, M. Ciancaglini, and L. Mastropasqua, “Effect of oral losartan potassium administration on intraocular pressure in normotensive and glaucomatous human subjects,” Experimental Eye Research, vol. 71, no. 2, pp. 167–171, 2000.
[163]  R. F. Wang, S. M. Podos, T. W. Mittag, and T. Yokoyoma, “Effect of CS-088, an angiotensin AT1 receptor antagonist, on intraocular pressure in glaucomatous monkey eyes,” Experimental Eye Research, vol. 80, no. 5, pp. 629–632, 2005.
[164]  G. B. Shah, S. Sharma, A. A. Mehta, and R. K. Goyal, “Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma,” Journal of Cardiovascular Pharmacology, vol. 36, no. 2, pp. 169–175, 2000.
[165]  W. H. Constad, P. Fiore, C. Samson, and A. A. Cinotti, “Use of an angiotensin converting enzyme inhibitor in ocular hypertension and primary open-angle glaucoma,” American Journal of Ophthalmology, vol. 105, no. 6, pp. 674–677, 1988.
[166]  M. Platten, S. Youssef, M. H. Eun et al., “Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 35, pp. 14948–14953, 2009.
[167]  T. V. Lanz, Z. Ding, P. P. Ho et al., “Angiotensin II sustains brain inflammation in mice via TGF-β,” Journal of Clinical Investigation, vol. 120, no. 8, pp. 2782–2794, 2010.
[168]  T. Ito, H. Yamakawa, C. Bregonzio, J. A. Terron, A. Falcon-Neri, and J. M. Saavedra, “Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist,” Stroke, vol. 33, no. 9, pp. 2297–2303, 2002.
[169]  S. Chen, G. Li, W. Zhang et al., “Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 297, no. 5, pp. R1526–R1531, 2009.
[170]  H. Yamakawa, M. Jezova, H. Ando, and J. M. Saavedra, “Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 3, pp. 371–380, 2003.
[171]  M. A. Fleegal-Demotta, S. Doghu, and W. A. Banks, “Angiotensin II modulates BBB permeability via activation of the AT 1 receptor in brain endothelial cells,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 3, pp. 640–647, 2009.
[172]  M. A. Millan, D. M. Jacobowitz, G. Aguilera, and K. J. Catt, “Differential distribution of AT1 and AT2 angiotensin II receptor subtypes in the rat brain during development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 24, pp. 11440–11444, 1991.
[173]  R. Lucius, S. Gallinat, P. Rosenstiel, T. Herdegen, J. Sievers, and T. Unger, “The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats,” Journal of Experimental Medicine, vol. 188, no. 4, pp. 661–670, 1998.
[174]  M. Iwai, H. W. Liu, R. Chen et al., “Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation,” Circulation, vol. 110, no. 7, pp. 843–848, 2004.
[175]  T. Unger, “The role of the renin-angiotensin system in the development of cardiovascular disease,” American Journal of Cardiology, vol. 89, supplement 2A, pp. 3A–10A, 2002.
[176]  I. Armando, A. Carranza, Y. Nishimura et al., “Peripheral administration of an angiotensin II AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress,” Endocrinology, vol. 142, no. 9, pp. 3880–3889, 2001.
[177]  S. Okuyama, T. Sakagawa, F. Sugiyama, A. Fukamizu, and K. Murakami, “Reduction of depressive-like behavior in mice lacking angiotensinogen,” Neuroscience Letters, vol. 261, no. 3, pp. 167–170, 1999.
[178]  A. Shekhar, P. L. Johnson, T. J. Sajdyk et al., “Angiotensin-II is a putative neurotransmitter in lactate-induced panic-like responses in rats with disruption of GABAergic inhibition in the dorsomedial hypothalamus,” Journal of Neuroscience, vol. 26, no. 36, pp. 9205–9215, 2006.
[179]  D. Zhu, J. Shi, Y. Zhang et al., “Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats,” PLoS ONE, vol. 6, no. 1, Article ID e16037, 2011.
[180]  J. Wang, L. Ho, L. Chen, Z. Zhao, W. Zao, and X. Qian, “Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease,” Hipertension, vol. 25, no. 2, pp. 85–86, 2008.
[181]  K. Zou, H. Yamaguchi, H. Akatsu, et al., “Angiotensin-converting enzyme converts amyloid β-protein 1–42 (Aβ(1–42)) to Aβ(1–40), and its inhibition enhances brain Aβ deposition,” The Journal of Neuroscience, vol. 27, no. 32, pp. 8628–8635, 2007.
[182]  S. Shaw, M. Bencherif, and M. B. Marrero, “Angiotensin II Blocks Nicotine-Mediated Neuroprotection against β-Amyloid (1-42) via Activation of the Tyrosine Phosphatase SHP-1,” Journal of Neuroscience, vol. 23, no. 35, pp. 11224–11228, 2003.
[183]  B. V. Bui, J. A. Armitage, M. Tolcos, M. E. Cooper, and A. J. Vingrys, “ACE inhibition salvages the visual loss caused by diabetes,” Diabetologia, vol. 46, no. 3, pp. 401–408, 2003.
[184]  J. A. Phipps, J. L. Wilkinson-Berka, and E. L. Fletcher, “Retinal dysfunction in diabetic ren-2 rats is ameliorated by treatment with valsartan but not atenolol,” Investigative Ophthalmology and Visual Science, vol. 48, no. 2, pp. 927–934, 2007.
[185]  Y. Ozawa, K. Nakao, T. Kurihara et al., “Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24561–24570, 2008.
[186]  Y. Ozawa, K. Nakao, T. Shimazaki et al., “SOCS3 is required to temporally fine-tune photoreceptor cell differentiation,” Developmental Biology, vol. 303, no. 2, pp. 591–600, 2007.
[187]  Y. Ozawa, K. Nakao, T. Shimazaki et al., “Downregulation of STAT3 activation is required for presumptive rod photoreceptor cells to differentiate in the postnatal retina,” Molecular and Cellular Neuroscience, vol. 26, no. 2, pp. 258–270, 2004.
[188]  Y. Ozawa, T. Kurihara, K. Tsubota, and H. Okano, “Regulation of posttranscriptional modification as a possible therapeutic approach for retinal neuroprotection,” Journal of Ophthalmology, vol. 2011, Article ID 506137, 8 pages, 2011.
[189]  M. Miyoshi, K. Miyano, N. Moriyama, M. Taniguchi, and T. Watanabe, “Angiotensin type 1 receptor antagonist inhibits lipopolysaccharide-induced stimulation of rat microglial cells by suppressing nuclear factor κB and activator protein-1 activation,” European Journal of Neuroscience, vol. 27, no. 2, pp. 343–351, 2008.
[190]  J. Benicky, E. Sanchez-Lemus, J. Pavel, and J. M. Saavedra, “Anti-inflammatory effects of angiotensin receptor blockers in the brain and the periphery,” Cellular and Molecular Neurobiology, vol. 29, no. 6-7, pp. 781–792, 2009.
[191]  M. R. Song and A. Ghosh, “FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation,” Nature Neuroscience, vol. 7, no. 3, pp. 229–235, 2004.
[192]  L. E. Downie, M. J. Pianta, A. J. Vingrys, J. L. Wilkinson-Berka, and E. L. Fletcher, “AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy,” GLIA, vol. 56, no. 10, pp. 1076–1090, 2008.
[193]  S. Okada, M. Nakamura, H. Katoh et al., “Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury,” Nature Medicine, vol. 12, no. 7, pp. 829–834, 2006.
[194]  E. R. Buchi, “Cell death in the rat retina after a pressure-induced ischaemia-reperfusion insult:an electron microscopic study. I. Ganglion cell layer and inner nuclear layer,” Experimental Eye Research, vol. 55, no. 4, pp. 605–613, 1992.
[195]  M. Berkelaar, D. B. Clarke, Y. C. Wang, G. M. Bray, and A. J. Aguayo, “Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats,” Journal of Neuroscience, vol. 14, no. 7, pp. 4368–4374, 1994.
[196]  Y. Li, C. L. Schlamp, and R. W. Nickells, “Experimental induction of retinal ganglion cell death in adult mice,” Investigative Ophthalmology and Visual Science, vol. 40, no. 5, pp. 1004–1008, 1999.
[197]  S. Takami, Y. Imai, T. Katsuya et al., “Gene polymorphism of the renin-angiotensin system associates with risk for lacunar infarction: the Ohasama study,” American Journal of Hypertension, vol. 13, no. 2, pp. 121–127, 2000.
[198]  J. Hata, K. Matsuda, T. Ninomiya et al., “Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction,” Human Molecular Genetics, vol. 16, no. 6, pp. 630–639, 2007.
[199]  L. H. G. Henskens, A. A. Kroon, M. P. J. Van Boxtel, P. A. M. Hofman, and P. W. De Leeuw, “Associations of the angiotensin II type 1 receptor A1166C and the endothelial NO synthase G894T gene polymorphisms with silent subcortical white matter lesions in essential hypertension,” Stroke, vol. 36, no. 9, pp. 1869–1873, 2005.
[200]  J. L. Wilkinson-Berka, G. Tan, K. J. Binger et al., “Aliskiren reduces vascular pathology in diabetic retinopathy and oxygen-induced retinopathy in the transgenic (mRen-2)27 rat,” Diabetologia, vol. 54, no. 10, pp. 2724–2735, 2011.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133