全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of acute proton, photon, and low-dose priming effects on genes associated with extracellular matrix and adhesion molecules in the lungs

DOI: 10.1186/1755-1536-6-4

Full-Text   Cite this paper   Add to My Lib

Abstract:

Overall, a marked difference was present in the proton vs. photon groups in gene expression. When compared to 0 Gy, more genes were affected by protons than by photons at both time points (11 vs. 6 on day 21 and 14 vs. 8 on day 56), and all genes affected by protons were upregulated. Many genes were modulated by LDR γ-rays when combined with photons or protons. Col1a1, mmp14, and mmp15 were significantly upregulated by all radiation regimens on day 21. Similarly, the change in expression of profibrotic proteins was also detected after acute and combination irradiation.These data show that marked differences were present between acutely delivered protons and photons in modulating genes, and the effect of protons was more profound than that of photons. Pre-exposure to LDR γ-rays ‘normalized’ some genes that were modified by acute irradiation.Ionizing radiation (IR) includes photons, small packets of energy that carry electromagnetic radiation, as well as particle radiations such as protons. Among the forms of photon radiation, γ-rays have the smallest wavelength and the most energy of any other wave in the electromagnetic spectrum. In contrast, protons are subatomic particles with an electric charge of +1 and have greater biological impact compared to photons [1]. Virtually all forms of radiation are of concern to the National Aeronautics and Space Administration (NASA). Crew members on space missions are routinely exposed to low dose background radiation that is more than 150 times greater than on Earth [2] and are at risk for much higher doses during a solar particle event (SPE) that consists primarily of proton radiation [3]. Thus far, pulmonary abnormalities noted in astronauts have been attributed primarily to microgravity [4,5]; risk for lung complications associated with space-relevant radiation are unknown. There have been essentially no investigations that directly compare acute proton and photon effects on normal lung tissue and possible modification of the

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413